From 8674d23d8d1dd567ea52ed1d82a23155a7010931 Mon Sep 17 00:00:00 2001 From: 0000OOOO0000 <63518686+0000OOOO0000@users.noreply.github.com> Date: Mon, 25 Oct 2021 08:04:39 +0300 Subject: [PATCH] Add files via upload --- ...⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX | 2559 +++++++++++++++-- 1 file changed, 2395 insertions(+), 164 deletions(-) diff --git a/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX b/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX index 606cac52..b7160437 100644 --- a/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX +++ b/◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯ⵙ◯ᗩIᗝI⚭◯⚪◯⚭IᗝIᗩ◯/◯✤ᴥᗩ◯ⵙ◯ᗩᴥ✤◯/◯ᗱᗴᴥᗩᗯ✤⏀Ⓞᔓᔕ◯ⵙ◯ᔓᔕⓄ⏀✤ᗯᗩᴥᗱᗴ◯/◯ᗝⵈ◯ⵙ◯ⵈᗝ◯/◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯ⵙ◯ᔓᔕⓄᴥᗱᗴᑐᑕⓄИNꖴ옷ᴥ◯⚪◯ᴥ옷ꖴИNⓄᑐᑕᗱᗴᴥⓄᔓᔕ◯/◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯ⵙ◯ᴥᗱᗴߦⓄ옷ᔓᔕᗩᴥᕤᕦ◯⚪◯ᕤᕦᴥᗩᔓᔕ옷Ⓞߦᗱᗴᴥ◯/XHG.⠀⠀⠀⠀◯⠀옷ߦᗩᴥᕤᕦ⠀◯⠀ᗝᗱᗴߦᗩᙏ⠀◯⠀ᗱᗴᙁ✤ᴥᑎ✤⠀◯⠀ᗱᗴᴥᑎ✤ᗩᗯᴥᑎᑐᑕ⠀◯⠀⠀⠀⠀ⵙ⠀⠀⠀⠀◯⠀ᑐᑕᑎᴥᗯᗩ✤ᑎᴥᗱᗴ⠀◯⠀✤ᑎᴥ✤ᙁᗱᗴ⠀◯⠀ᙏᗩߦᗱᗴᗝ⠀◯⠀ᕤᕦᴥᗩߦ옷⠀◯⠀⠀⠀⠀.GHX @@ -48,8 +48,8 @@ - -1171 - 333 + -873 + 432 0.8392804 @@ -95,9 +95,9 @@ - 52 + 73 - + fb6aba99-fead-4e42-b5d8-c6de5ff90ea6 @@ -917,6 +917,7 @@ Sine wave distribution Sine wave distribution Sine wave distribution +Sine wave distribution Sine wave distribution 12324cf9-85ea-4ccf-8d27-ca279182d95e Graph Mapper @@ -1360,7 +1361,7 @@ Sine wave distribution - + 2 Input stream at index 4 1de74f01-6982-4452-8d86-433912ae2f98 @@ -1368,7 +1369,8 @@ Sine wave distribution Stream 4 4 true - 0 + 803c8e7a-aa56-451e-882b-0a1cd117bf16 + 1 @@ -1394,7 +1396,7 @@ Sine wave distribution 34b6e5a6-a1ba-4214-b996-0fa3a932cd38 false Stream - S(1) + S(4) false 0 @@ -1524,14 +1526,14 @@ Sine wave distribution - 1731 - 230 + 1728 + 236 71 64 - 1788 - 262 + 1785 + 268 @@ -1551,14 +1553,14 @@ Sine wave distribution - 1733 - 232 + 1730 + 238 40 20 - 1754.5 - 242 + 1751.5 + 248 @@ -1578,14 +1580,14 @@ Sine wave distribution - 1733 - 252 + 1730 + 258 40 20 - 1754.5 - 262 + 1751.5 + 268 @@ -1625,14 +1627,14 @@ Sine wave distribution - 1733 - 272 + 1730 + 278 40 20 - 1754.5 - 282 + 1751.5 + 288 @@ -1674,6 +1676,7 @@ Sine wave distribution Sine wave distribution Sine wave distribution Linear distribution +Linear distribution Linear distribution 476fd755-34c1-41fd-94b7-5d27abb8249b Graph Mapper @@ -1686,14 +1689,14 @@ Linear distribution - 496 - 175 + 498 + 174 100 100 - 496.2162 - 175.8607 + 498.5992 + 174.6692 @@ -1716,10 +1719,10 @@ Linear distribution 0 71629651-0343-46d7-ac9e-d6041f9fe66b Linear - 0.25 - 0.75 - 0.25 - 0.75 + 0 + 1 + 0 + 1 @@ -2346,7 +2349,7 @@ Linear distribution Digit Scroller 11 - 115.0 + 118.0 @@ -2475,7 +2478,7 @@ Linear distribution Digit Scroller 11 - 50.2 + 50.0 @@ -2561,20 +2564,20 @@ Linear distribution Digit Scroller 11 - 1.0 + 4.0 - 602 - 190 + 603 + 185 250 20 - 602.5042 - 190.6908 + 603.6957 + 185.9248 @@ -2600,14 +2603,14 @@ Linear distribution - 1079 - 75 + 1048 + 72 141 64 - 1147 - 107 + 1116 + 104 @@ -2625,14 +2628,14 @@ Linear distribution - 1081 - 77 + 1050 + 74 51 20 - 1108 - 87 + 1077 + 84 @@ -2652,14 +2655,14 @@ Linear distribution - 1081 - 97 + 1050 + 94 51 20 - 1108 - 107 + 1077 + 104 @@ -2698,14 +2701,14 @@ Linear distribution - 1081 - 117 + 1050 + 114 51 20 - 1108 - 127 + 1077 + 124 @@ -2754,14 +2757,14 @@ Linear distribution - 1162 - 77 + 1131 + 74 56 30 - 1190 - 92 + 1159 + 89 @@ -2780,14 +2783,14 @@ Linear distribution - 1162 - 107 + 1131 + 104 56 30 - 1190 - 122 + 1159 + 119 @@ -3471,14 +3474,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1304 - 61 + 1250 + 20 141 84 - 1372 - 103 + 1318 + 62 @@ -3496,14 +3499,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1306 - 63 + 1252 + 22 51 20 - 1333 - 73 + 1279 + 32 @@ -3523,14 +3526,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1306 - 83 + 1252 + 42 51 20 - 1333 - 93 + 1279 + 52 @@ -3574,14 +3577,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1306 - 103 + 1252 + 62 51 20 - 1333 - 113 + 1279 + 72 @@ -3624,14 +3627,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1306 - 123 + 1252 + 82 51 20 - 1333 - 133 + 1279 + 92 @@ -3674,14 +3677,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1387 - 63 + 1333 + 22 56 40 - 1415 - 83 + 1361 + 42 @@ -3700,14 +3703,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1387 - 103 + 1333 + 62 56 40 - 1415 - 123 + 1361 + 82 @@ -3911,14 +3914,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1476 - 65 + 1478 + 91 121 44 - 1539 - 87 + 1541 + 113 @@ -3938,14 +3941,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1478 - 67 + 1480 + 93 46 20 - 1502.5 - 77 + 1504.5 + 103 @@ -3964,14 +3967,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1478 - 87 + 1480 + 113 46 20 - 1502.5 - 97 + 1504.5 + 123 @@ -4011,14 +4014,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1554 - 67 + 1556 + 93 41 40 - 1574.5 - 87 + 1576.5 + 113 @@ -4050,16 +4053,16 @@ False for input values on the X Axis which do not intersect a graph curve - 1673 - -142 - 50 - 50 + 1674 + -139 + 195 + 204 - 1673.302 - -141.6778 + 1674.18 + -138.3043 - -1 + 0 @@ -4077,7 +4080,7 @@ False for input values on the X Axis which do not intersect a graph curve A panel for custom notes and text values 0c500c4b-1420-4ebb-99a0-41e3849d151a Panel - Panel + false 1 805f2edb-cc3f-4a58-b59f-743b168199fd @@ -4088,8 +4091,8 @@ False for input values on the X Axis which do not intersect a graph curve - 1675 - -89 + 1583 + -106 87 100 @@ -4097,8 +4100,8 @@ False for input values on the X Axis which do not intersect a graph curve 0 0 - 1675.588 - -88.60313 + 1583.843 + -105.2841 @@ -4712,14 +4715,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1776 - -502 + 1948 + -506 65 64 - 1807 - -470 + 1979 + -474 @@ -4731,21 +4734,21 @@ False for input values on the X Axis which do not intersect a graph curve Vertices V false - 3c226f4c-dbc1-4ed0-85b3-d312596e2e17 + 3eec8cc8-d223-4950-96fe-e4508b43a8fe 1 - 1778 - -500 + 1950 + -504 14 20 - 1786.5 - -490 + 1958.5 + -494 @@ -4764,14 +4767,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1778 - -480 + 1950 + -484 14 20 - 1786.5 - -470 + 1958.5 + -474 @@ -4810,14 +4813,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1778 - -460 + 1950 + -464 14 20 - 1786.5 - -450 + 1958.5 + -454 @@ -4856,14 +4859,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1822 - -500 + 1994 + -504 17 20 - 1830.5 - -490 + 2002.5 + -494 @@ -4882,14 +4885,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1822 - -480 + 1994 + -484 17 20 - 1830.5 - -470 + 2002.5 + -474 @@ -4908,14 +4911,14 @@ False for input values on the X Axis which do not intersect a graph curve - 1822 - -460 + 1994 + -464 17 20 - 1830.5 - -450 + 2002.5 + -454 @@ -4939,6 +4942,7 @@ Sine wave distribution Linear distribution Linear distribution Linear distribution +Linear distribution Linear distribution db82b695-c28d-498a-8d90-3227c158ad9a Graph Mapper @@ -5015,7 +5019,7 @@ Linear distribution Digit Scroller 1 - 0.00150038828 + 0.00100038828 @@ -5058,7 +5062,7 @@ Linear distribution Digit Scroller 11 - 99.2 + 61.0 @@ -5139,13 +5143,13 @@ Linear distribution - 1140 + 1161 -331 143 44 - 1222 + 1243 -309 @@ -5163,13 +5167,13 @@ Linear distribution - 1142 + 1163 -329 65 20 - 1176 + 1197 -319 @@ -5210,13 +5214,13 @@ Linear distribution - 1142 + 1163 -309 65 20 - 1176 + 1197 -299 @@ -5256,13 +5260,13 @@ Linear distribution - 1237 + 1258 -329 44 40 - 1259 + 1280 -309 @@ -5295,7 +5299,7 @@ Linear distribution Digit Scroller 8 - 0.1525 + 0.0861 @@ -5397,7 +5401,7 @@ Linear distribution Domain end Domain end false - a4bde5d6-e053-421d-8330-18c99a954b18 + 7b31b4af-f791-41e1-b265-aeac6abb8237 1 @@ -5489,7 +5493,7 @@ Linear distribution Digit Scroller 8 - 0.0625 + 0.1250 @@ -5541,7 +5545,7 @@ Linear distribution 1673.858 -191.8802 - -1 + 0 @@ -5745,8 +5749,9 @@ Linear distribution - + Evaluate the derivatives of a curve at a specified parameter. + true fb8cb2d8-5e2f-4911-8f58-208b616136d9 Derivatives Derivatives @@ -6132,12 +6137,13 @@ Linear distribution - + false 0 Preview vectors in the viewport 0.1 15 + true 719b86e4-9e3d-4d67-a04d-952b70090645 Vector Display Vector Display @@ -6265,6 +6271,2231 @@ Linear distribution + + + a9a8ebd2-fff5-4c44-a8f5-739736d129ba + C# Script + + + + + public CurveEvaluationSide ces; + A C#.NET scriptable component + + 33 + 106 + + true + 8396fe2f-1268-40c9-851c-f2155b1103be + C# Script + C# + true + 0 + + cList = cList.Where(x => x != null).ToList(); + if(!cList.Any())return; + + DataTree<Vector3d> vTree = new DataTree<Vector3d>(); + DataTree<Vector3d> vcTree = new DataTree<Vector3d>(); + + List<Point3d> pList = new List<Point3d>(); + + switch(crvEvaluation){ + case 0: ces = CurveEvaluationSide.Default; break; + case -1: ces = CurveEvaluationSide.Below; break; + case 1: ces = CurveEvaluationSide.Above; break; + } + + for(int i = 0; i < cList.Count; i++){ + Curve crv = cList[i]; + crv.Domain = new Interval(0, 1); + Point3d pt = crv.PointAt(t); + pList.Add(pt); + + Vector3d[] vSet = crv.DerivativeAt(t, derivCount, ces); + Vector3d crvC = crv.CurvatureAt(t); + vcTree.Add(crvC, new GH_Path(i)); + + for(int j = 0; j < vSet.Length;j++){ + Vector3d v = vSet[j]; + if(v == Vector3d.Unset) continue; + if(unitize){ + v.Unitize(); v *= displayFactor; + } + vTree.Add(v, new GH_Path(i)); + } + } + + pointAtTList = pList; + derivativeVectorTree = vTree; + curvatureVectorTree = vcTree; + + + + + + 2128 + -115 + 317 + 124 + + + 2211 + -53 + + + + + + 6 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 84fa917c-1ed8-4db3-8be1-7bdc4a6495a2 + 5 + 3ede854e-c753-40eb-84cb-b48008f14fd4 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + 1 + true + Script Variable cList + 21688e98-3bcb-4252-8aa7-29ea199399e1 + cList + cList + true + 1 + true + 38cf4e17-ca6a-4dad-8a9a-b880812ed23a + 3733e2e8-4bd3-44f1-8b68-31f8853c8921 + 2 + 9ba89ec2-5315-435f-a621-b66c5fa2f301 + + + + + + 2130 + -113 + 66 + 20 + + + 2164.5 + -103 + + + + + + + + true + Script Variable t + 0860177c-4cfc-4fcd-bbe3-01258282e083 + t + t + true + 0 + true + 195542d9-05b6-4855-9340-e9390b725501 + 1 + 19ff81a2-dc4f-4035-8de9-26224c561321 + + + + + + 2130 + -93 + 66 + 20 + + + 2164.5 + -83 + + + + + + + + true + Script Variable derivCount + 8c0411a1-2848-465c-9196-27e95d76d799 + derivCount + derivCount + true + 0 + true + b43013e4-a884-4724-89a3-a06b4c03f8bd + 1 + 48d01794-d3d8-4aef-990e-127168822244 + + + + + + 2130 + -73 + 66 + 20 + + + 2164.5 + -63 + + + + + + + + true + Script Variable crvEvaluation + 033c0a41-3576-401c-922d-1e8a33500ed2 + crvEvaluation + crvEvaluation + true + 0 + true + cbc67655-ccca-4513-a0b8-f05a3e067de8 + 1 + 48d01794-d3d8-4aef-990e-127168822244 + + + + + + 2130 + -53 + 66 + 20 + + + 2164.5 + -43 + + + + + + + + true + Script Variable unitize + 56e41b28-4fc1-47bd-aad7-69476eb1edd3 + unitize + unitize + true + 0 + true + d7b06ea1-8fe4-44b9-afc8-ec951c5bb262 + 1 + d60527f5-b5af-4ef6-8970-5f96fe412559 + + + + + + 2130 + -33 + 66 + 20 + + + 2164.5 + -23 + + + + + + + + true + Script Variable displayFactor + 05d8b84d-ebf6-42ad-be1f-c0928f19fe7a + displayFactor + displayFactor + true + 0 + true + 881508be-ab7e-4d21-a62f-4946edcee11e + 1 + 19ff81a2-dc4f-4035-8de9-26224c561321 + + + + + + 2130 + -13 + 66 + 20 + + + 2164.5 + -3 + + + + + + + + 1 + Print, Reflect and Error streams + ea0bf1b9-b930-4876-b8be-e16009635d03 + out + out + false + 0 + + + + + + 2226 + -113 + 217 + 24 + + + 2334.5 + -101 + + + + + + + + Output parameter theBiggestMessageOfTheDayIsSimplyThatOne + 4db43b49-0d79-4322-af9e-262ab0a2979c + theBiggestMessageOfTheDayIsSimplyThatOne + theBiggestMessageOfTheDayIsSimplyThatOne + false + 0 + + + + + + 2226 + -89 + 217 + 24 + + + 2334.5 + -77 + + + + + + + + Output parameter pointAtTList + 0268107c-6e3a-42d5-a45f-58b4ddad7d71 + pointAtTList + pointAtTList + false + 0 + + + + + + 2226 + -65 + 217 + 24 + + + 2334.5 + -53 + + + + + + + + Output parameter derivativeVectorTree + f9654ade-ae4b-4a42-828b-456ba3607eea + derivativeVectorTree + derivativeVectorTree + false + 0 + + + + + + 2226 + -41 + 217 + 24 + + + 2334.5 + -29 + + + + + + + + Output parameter curvatureVectorTree + 5cc3aee2-18fc-40f6-8ec6-46b59e7fd73d + curvatureVectorTree + curvatureVectorTree + false + 0 + + + + + + 2226 + -17 + 217 + 24 + + + 2334.5 + -5 + + + + + + + + + + + + + + 57da07bd-ecab-415d-9d86-af36d7073abc + Number Slider + + + + + Numeric slider for single values + 195542d9-05b6-4855-9340-e9390b725501 + Number Slider + + false + 0 + + + + + + 1925 + -93 + 167 + 20 + + + 1925.296 + -92.04393 + + + + + + 3 + 1 + 0 + 1 + 0 + 0 + 1 + + + + + + + + + 57da07bd-ecab-415d-9d86-af36d7073abc + Number Slider + + + + + Numeric slider for single values + b43013e4-a884-4724-89a3-a06b4c03f8bd + Number Slider + + false + 0 + + + + + + 1895 + -72 + 196 + 20 + + + 1895.32 + -71.34213 + + + + + + 3 + 1 + 1 + 16 + 0 + 0 + 16 + + + + + + + + + 00027467-0d24-4fa7-b178-8dc0ac5f42ec + Value List + + + + + Provides a list of preset values to choose from + cbc67655-ccca-4513-a0b8-f05a3e067de8 + 3 + 1 + Value List + List + false + 0 + + + + + 0 + Default + true + + + + + -1 + Below + false + + + + + 1 + Above + false + + + + + + 2012 + -54 + 68 + 22 + + + + + + + + + + 2a3f7078-2e25-4dd4-96f7-0efb491bd61c + Vector Display + + + + + false + 0 + Preview vectors in the viewport + 0.1 + 15 + true + cc5d8905-15de-4b16-a489-7a7c392ba7ad + Vector Display + VDis + + + + + 3 + false + false + + + + + + 255;255;0;0 + + + 255;255;0;0 + + 0 + a49bb500-a99a-418c-b752-a052c5cb9bd1 + + + + + + 255;255;165;0 + + + 255;255;165;0 + + 0.5 + c86a5a5a-05f1-4f3b-a582-473ed0329807 + + + + + + 255;124;252;0 + + + 255;124;252;0 + + 1 + 3f23e5b6-c8b0-41d1-8ff7-f05ab6c47f42 + + + + + + + + 2475 + -88 + 81 + 44 + + + 2542 + -66 + + + + + + Anchor point for preview vector + 6fcd81b3-270f-4ab7-812e-ad00e71773ab + 2 + Anchor + A + true + true + 0268107c-6e3a-42d5-a45f-58b4ddad7d71 + 1 + 1 + + + + + + 2477 + -86 + 50 + 20 + + + 2521.5 + -76 + + + + + + + + Vector to preview + 80f75b38-1f49-4359-8e96-f7e10d30fb07 + Vector + V + true + f9654ade-ae4b-4a42-828b-456ba3607eea + 1 + 1 + + + + + + 2477 + -66 + 50 + 20 + + + 2521.5 + -56 + + + + + + + + + + + + 2e78987b-9dfb-42a2-8b76-3923ac8bd91a + Boolean Toggle + + + + + Boolean (true/false) toggle + d7b06ea1-8fe4-44b9-afc8-ec951c5bb262 + Boolean Toggle + Toggle + false + 0 + true + + + + + + 1982 + -34 + 100 + 22 + + + + + + + + + + 57da07bd-ecab-415d-9d86-af36d7073abc + Number Slider + + + + + Numeric slider for single values + 881508be-ab7e-4d21-a62f-4946edcee11e + Number Slider + + false + 0 + + + + + + 1880 + -12 + 209 + 20 + + + 1880.914 + -11.25333 + + + + + + 1 + 1 + 0 + 30 + 1 + 0 + 9.7 + + + + + + + + + 2a3f7078-2e25-4dd4-96f7-0efb491bd61c + Vector Display + + + + + false + 0 + Preview vectors in the viewport + 0.1 + 15 + true + cfdb68da-a559-47e5-b7b7-3fc748ccfec1 + Vector Display + VDis + + + + + 3 + false + false + + + + + + 255;255;0;0 + + + 255;255;0;0 + + 0 + a49bb500-a99a-418c-b752-a052c5cb9bd1 + + + + + + 255;255;165;0 + + + 255;255;165;0 + + 0.5 + c86a5a5a-05f1-4f3b-a582-473ed0329807 + + + + + + 255;124;252;0 + + + 255;124;252;0 + + 1 + 3f23e5b6-c8b0-41d1-8ff7-f05ab6c47f42 + + + + + + + + 2478 + -37 + 81 + 44 + + + 2545 + -15 + + + + + + Anchor point for preview vector + 43ce29f2-ef55-4f48-a203-66d0f03a2fde + 2 + Anchor + A + true + true + 0268107c-6e3a-42d5-a45f-58b4ddad7d71 + 1 + 1 + + + + + + 2480 + -35 + 50 + 20 + + + 2524.5 + -25 + + + + + + + + Vector to preview + ee1082b9-139c-4b1c-97b4-29d4043d973f + Vector + V + true + 5cc3aee2-18fc-40f6-8ec6-46b59e7fd73d + 1 + 1 + + + + + + 2480 + -15 + 50 + 20 + + + 2524.5 + -5 + + + + + + + + + + + + 9df5e896-552d-4c8c-b9ca-4fc147ffa022 + Expression + + + + + Evaluate an expression + X+1/2*x^2+1/6*x^3+1/24*x^4+1/120*x^5+1/720*x^6+1/5040*x^7+1/40320*x^8++1/322560*x^9 + b6117598-2550-4bef-852d-284056deeb9a + Expression + Expression + + + + + + 209 + 628 + 919 + 84 + + + 755 + 670 + + + + + + 4 + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + ba80fd98-91a1-4958-b6a7-a94e40e52bdb + 1 + 8ec86459-bf01-4409-baee-174d0d2b13d0 + + + + + Expression variable + c10c5fc0-81dd-4e75-9cb8-1f781751c9f2 + Variable X + X + true + 4a521433-15f9-4232-bbd6-a4193c7aaecc + 1 + + + + + + 211 + 630 + 188 + 20 + + + 306.5 + 640 + + + + + + + + Expression variable + 9ebe39c3-ecce-4738-ba7d-2301daa04598 + Variable O_EZIS_O_SIZE_O + O_EZIS_O_SIZE_O + true + 0 + + + + + + 211 + 650 + 188 + 20 + + + 306.5 + 660 + + + + + + + + Expression variable + f2bb2d7f-b5db-4dcf-a60b-1ece90ccf25c + Variable O_REWOP_TOOR_O_ROOT_POWER_O + O_REWOP_TOOR_O_ROOT_POWER_O + true + 0 + + + + + + 211 + 670 + 188 + 20 + + + 306.5 + 680 + + + + + + + + Expression variable + 673fb98e-59c1-4b17-962f-4be7d6862886 + Variable O_REWOP_O_POWER_O + O_REWOP_O_POWER_O + true + 0 + + + + + + 211 + 690 + 188 + 20 + + + 306.5 + 700 + + + + + + + + Result of expression + 803c8e7a-aa56-451e-882b-0a1cd117bf16 + Result + R + false + 0 + + + + + + 1110 + 630 + 16 + 80 + + + 1118 + 670 + + + + + + + + + + + + + + f12daa2f-4fd5-48c1-8ac3-5dea476912ca + Mirror + + + + + Mirror an object. + true + 75c9636e-5fd2-48c6-b9ab-8a55275b96c3 + Mirror + Mirror + + + + + + 1773 + -508 + 141 + 44 + + + 1841 + -486 + + + + + + Base geometry + 80fb69a8-60d9-4b7a-aca4-c044cc1cd5e2 + Geometry + Geometry + true + 3c226f4c-dbc1-4ed0-85b3-d312596e2e17 + 1 + + + + + + 1775 + -506 + 51 + 20 + + + 1802 + -496 + + + + + + + + Mirror plane + 8afa4c09-a9e0-4a37-b05d-708fea1484c6 + Plane + Plane + false + 0 + + + + + + 1775 + -486 + 51 + 20 + + + 1802 + -476 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 0 + 0 + 0 + 1 + 0 + 0 + 0 + 1 + + + + + + + + + + + + Mirrored geometry + aed36345-c1aa-465e-a88d-7204e2a4e7a2 + Geometry + Geometry + false + 0 + + + + + + 1856 + -506 + 56 + 20 + + + 1884 + -496 + + + + + + + + Transformation data + 4fad1b0f-61b6-4218-9c01-e98c2ee1f54d + Transform + Transform + false + 0 + + + + + + 1856 + -486 + 56 + 20 + + + 1884 + -476 + + + + + + + + + + + + 5edaea74-32cb-4586-bd72-66694eb73160 + Rotate Direction + + + + + Rotate an object from one direction to another. + true + 21cf9cf1-30b7-4ad6-a263-6eb09280741f + Rotate Direction + Rotate Direction + + + + + + 1771 + -427 + 141 + 84 + + + 1839 + -385 + + + + + + Base geometry + 93382842-baa8-4e27-a5b2-dfd8223fd169 + Geometry + Geometry + true + 3c226f4c-dbc1-4ed0-85b3-d312596e2e17 + 1 + + + + + + 1773 + -425 + 51 + 20 + + + 1800 + -415 + + + + + + + + Rotation center point + a607301a-1ed4-4022-ae03-0174e14d17ea + Center + Center + false + 0 + + + + + + 1773 + -405 + 51 + 20 + + + 1800 + -395 + + + + + + 1 + + + + + 1 + {0} + + + + + + + 0 + 0 + 0 + + + + + + + + + + + + Initial direction + 8f4c227c-206f-4c73-921b-3e10394b18ca + From + From + false + 0 + + + + + + 1773 + -385 + 51 + 20 + + + 1800 + -375 + + + + + + 1 + + + + + 1 + {0} + + + + + + 1 + 0 + 0 + + + + + + + + + + + + Final direction + 3771b995-945f-467c-ade8-c6f51a9a6e2e + To + To + false + 0 + + + + + + 1773 + -365 + 51 + 20 + + + 1800 + -355 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 1 + 0 + + + + + + + + + + + + Rotated geometry + 3eec8cc8-d223-4950-96fe-e4508b43a8fe + Geometry + Geometry + false + 0 + + + + + + 1854 + -425 + 56 + 40 + + + 1882 + -405 + + + + + + + + Transformation data + 23c46d6b-9db9-417d-860f-8affb62fb44e + Transform + Transform + false + 0 + + + + + + 1854 + -385 + 56 + 40 + + + 1882 + -365 + + + + + + + + + + + + 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef + Quick Graph + + + + + 1 + Display a set of y-values as a graph + 2b999ca9-51c7-4194-98c4-24cb038fdc41 + Quick Graph + Quick Graph + false + 0 + 660e66b2-db6b-4f9a-8b80-838ce371dd29 + 1 + + + + + + 164 + 276 + 140 + 118 + + + 164.9961 + 276.3839 + + -1 + + + + + + + + + 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef + Quick Graph + + + + + 1 + Display a set of y-values as a graph + 8d8100e9-6f7e-4521-8fc8-311728ce3f16 + Quick Graph + Quick Graph + false + 0 + 373c6a08-8824-4c99-a557-ae06da3113d5 + 1 + + + + + + 244 + 487 + 141 + 118 + + + 244.1054 + 487.7469 + + -1 + + + + + + + + + 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef + Quick Graph + + + + + 1 + Display a set of y-values as a graph + c258b940-516b-4377-a3c9-009ddabb39bc + Quick Graph + Quick Graph + false + 0 + 803c8e7a-aa56-451e-882b-0a1cd117bf16 + 1 + + + + + + 45 + 649 + 141 + 118 + + + 45.59317 + 649.067 + + -1 + + + + + + + + + bc984576-7aa6-491f-a91d-e444c33675a7 + Graph Mapper + + + + + Represents a numeric mapping function +Sine wave distribution +Sine wave distribution +Linear distribution +Linear distribution +Linear distribution +Sine wave distribution + 2b9d1a87-5e71-48b1-aab3-2877885779bd + Graph Mapper + Graph + false + e2cefd9a-b17a-409a-99a9-94a364d3203d + 1 + + + + + + 217 + 770 + 100 + 100 + + + 217.8739 + 770.9707 + + + + + + false + + + + + 0 + 1 + 0 + 1 + + + + + 7d54f77a-a866-49ed-95eb-b1f9fb25a1f1 + Sine + + + + + 0 + 1 + 0 + 1 + + + + + + + + + + + + + 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef + Quick Graph + + + + + 1 + Display a set of y-values as a graph + 9c7414a4-5eb2-47b3-a6fe-f97352b0cd62 + Quick Graph + Quick Graph + false + 0 + 2b9d1a87-5e71-48b1-aab3-2877885779bd + 1 + + + + + + 396 + 754 + 166 + 133 + + + 396.4671 + 754.4646 + + -1 + + + + + + + + + e64c5fb1-845c-4ab1-8911-5f338516ba67 + Series + + + + + Create a series of numbers. + b8a8c9b2-f826-4c39-bf95-37002dbe29ba + Series + Series + + + + + + 477 + 952 + 64 + 64 + + + 508 + 984 + + + + + + First number in the series + 9f55dfa7-7d33-4c5a-a1b3-136e12a3826d + Start + S + false + 0 + + + + + + 479 + 954 + 14 + 20 + + + 487.5 + 964 + + + + + + 1 + + + + + 1 + {0} + + + + + 0 + + + + + + + + + + + Step size for each successive number + 04b34072-aabb-45b7-8b35-81711e44b8e5 + Step + N + false + c5f6a68e-3c41-4213-afb0-778f17a74326 + 1 + + + + + + 479 + 974 + 14 + 20 + + + 487.5 + 984 + + + + + + 1 + + + + + 1 + {0} + + + + + 1 + + + + + + + + + + + Number of values in the series + 572463f2-9336-479e-9b1e-923952ccc3a8 + Count + C + false + 1185f0ab-7497-48a7-b85a-ef82bdd98f9b + 1 + + + + + + 479 + 994 + 14 + 20 + + + 487.5 + 1004 + + + + + + 1 + + + + + 1 + {0} + + + + + 500 + + + + + + + + + + + 1 + Series of numbers + 95275a2b-90b9-40c7-a720-c261397aab5f + Series + S + false + 0 + + + + + + 523 + 954 + 16 + 60 + + + 531 + 984 + + + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + c5f6a68e-3c41-4213-afb0-778f17a74326 + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 1 + + 1.50000000000 + + + + + + 56 + 984 + 250 + 20 + + + 56.52431 + 984.3077 + + + + + + + + + + 33bcf975-a0b2-4b54-99fd-585c893b9e88 + Digit Scroller + + + + + Numeric scroller for single numbers + 1185f0ab-7497-48a7-b85a-ef82bdd98f9b + Digit Scroller + Digit Scroller + false + 0 + + + + + 12 + Digit Scroller + 11 + + 20.0 + + + + + + 56 + 944 + 250 + 20 + + + 56.86929 + 944.132 + + + + + + + + + + 9445ca40-cc73-4861-a455-146308676855 + Range + + + + + Create a range of numbers. + 9c29604b-ad68-429f-98a9-ca9db91b7cea + Range + Range + + + + + + 56 + 800 + 113 + 44 + + + 114 + 822 + + + + + + Domain of numeric range + 7a9b1bc5-d4b9-45cb-bd3a-160ac562ec6a + Domain + Domain + false + 0 + + + + + + 58 + 802 + 41 + 20 + + + 80 + 812 + + + + + + 1 + + + + + 1 + {0} + + + + + + 0 + 1 + + + + + + + + + + + + Number of steps + e4774863-d910-4df1-857a-d75f2d13c418 + Steps + Steps + false + 1185f0ab-7497-48a7-b85a-ef82bdd98f9b + 1 + + + + + + 58 + 822 + 41 + 20 + + + 80 + 832 + + + + + + 1 + + + + + 1 + {0} + + + + + 10 + + + + + + + + + + + 1 + Range of numbers + e2cefd9a-b17a-409a-99a9-94a364d3203d + Range + Range + false + 0 + + + + + + 129 + 802 + 38 + 40 + + + 148 + 822 + + + + + + + + + + + + 2b69bf71-4e69-43aa-b7be-4f6ce7e45bef + Quick Graph + + + + + 1 + Display a set of y-values as a graph + a35153bf-ba67-4308-aef2-2120b60bbfde + Quick Graph + Quick Graph + false + 0 + 476fd755-34c1-41fd-94b7-5d27abb8249b + 1 + + + + + + 643 + 235 + 140 + 118 + + + 643.2544 + 235.1495 + + -1 + + + + + + @@ -6272,7 +8503,7 @@ Linear distribution - iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAB97SURBVHhe7Z33V1RZtsfnH5kf3nqrf3hrzfzwetasWc/pnjVOT08HbQVaBbux20i3tiIqINkACJJzDlIURS6goAJJVMSEYgLFhDlMB0Mbnq0z8j6w592pKqAoqiQodRbrrluXG84537P3/u69zz33V79ylbegBwZd5Y3tgX8NP+rf1dW1z7IcPHgwKiqqrKzs+PHjGRkZKSkphw8ftjqnvb29sVGfnJxeXl5lMrUbja1s6+qa4uISOzoONjQ0HDhwwOqSyf65f/9+apWampqZmVlSUnLo0KHJfuI03h/gbEEIYAUFBXFxcSdOnIiPj8/Pz1e6g25i/8iRIy0tLcXFpdnZBXp9y8GDxzo7j7Jtb+9MT88xGvfW1dVPPYSdnZ11dXUMuISEhNbWVqo6jV082Y8eB0L6wmAwhIWFUY/du3eXlpaKpALtMHLF2dnZGzasT0xMSU/PranR0V3NzfvYNjW1JCSk1tcbtdo6bjLZzbC6P9Wjbrt27UIKR6qNKa7MZD9uHAh5PJhFR0dXVFQgi2yRPI7k5uaiYNnW1taq1aUxMQkhIVFZWXtKS2tLSmpUqtrCQk1Q0Pbs7JLaWu3UQ0gNEcHw8PD6+npswWR34vTe3wJC0BlZGzBDl6KRYmNjq6urjx49yj5mBvWIFqWDuColJXv1at+dOxMTE/MSEnLYxsam+/j47diRXFVVPcWdSMVMJtPWrVup59ttBQUsCwhH7WtkSK/XM6IpKNXCwkIG+LFjxxQDg6FJSMj46qt1K1Z89913AevW+bNds2ajt7fPrl0Z5eUVXV1TKgdoTpVK5ePjA5MaSdCmV2Im4+kWEI71AFDcsWOHr68vUhgTE8NPc4IA8Pn5xZs3h2/aFLJpU6jyFxCwzd8/HE07xVIIhAEBAdu3b0dJTEaXzbR72gUhnYLkffvtt6gmtVptRRCAs7GxsaGhsba2Dss39FcHjzE16g3QUSR4KhkpYgcX9fLyQmFM8dCZLmjthRB3YvHixZGRkVTUiqO3trYYDKayssrc3IIydYWmWltWqkn0XpYcsLWv//IUOxX4r4GBgeiM7u7u6erTKX6uvRDi3f/5z3+GxUBnRlSxQ6fTp6dn19c37T94tF3fUuH1ZdW2yKTE1I59XfX1U+faI3ZNTU1ff/11R0fHVIr+FGNm9Ti7IMSoEON47733sIUKx8MiolHpNa1Wm59flJVV0NjY3HXynC4ozBAT39HTl5qWrde3odY6O6ciOgNsxB+CgoLS0tJgW9PbrVP5dLsgRCnBDj788EOGNlqUAngYufT0dFxGRn1CQkpqak51VUNzV0/VyjWG8tpGfVtcXEptrR6Ap8YvZGxVVlZ+8803b70vb0sKBR6rMwAA5Nzc3PAYwJKfSF5WVhYmJzk5uaamRqutjYlJDNi6I7VAU7wlJN9tcVGpNienFDqamlpYXQ0jnfTojIyqlStX4vPMEiKqwGQhhbA4o9Fo5TBAEIhUvf/++/QOEPJf4jLwBdxnOgsGOOTap+Wu+Hrt9r/NT/jg49jo1Nj47MjIxFWr1u/cmVxZWTUFzBDNSfAIzjyaqZ5KrTYNz7KAkIEMQmADVBTAI0a8ZcuWefPmIYIYG5QV+OEagpwCDHKbmJKzfN7ir+fMXb1+6+pvNq9ZvRE339v7G6IzGs2ku/bUCovr6elZVVU1G8IxthTp06dPHz58CB2gEE7z8/NbuHAh1gWbRzi7p6cH7xC/AvzM+R4/8/MLE5Jzsgs1GRkF/GXlqbIL1PmFZfHxqWjaSbWF3JyxtWnTptnjy9uC8NatW3fv3g0NDUVtQl7E/mH2EETyEsS4Q0JC9u7dawUJUqjXG5qbW9VqTS2WsVGvycgsjoouzc3v6+vX6XSTmupB7IjMAuEsCaeN1NQWihQIr1y5ggtIv0gh0r9mzRp/f3+ixsuWLYOFYv8Y9VY3woZmZORkZubq9M1VeUXZ8xdosvN3btvZ2rZfp2ucvHQdlo8QPLkw1MZsI6Kj0xmBkBAacoZF3LNnDz4DQU6wJEC6YcMGKANXihblHI7TcdCZioqqnJzC2lrdkdPnTXHJxujdh/suZQ0ngXHtJwlCno6fisInkYlHP6nqehpYit2PtJDCe/fugWJERAQyh3bC/qE2AYkjOTk5EBz6Cy7D2IfLEBclrcpsjIAA/+jo2JycorKy6o4jp+qDIxoTUlsPHEtOzqitbSLlizNpd33sPRHA0O1QZSpJXne2ORLm3WQB4Y0bN5BCUMG7YIyfPHmSGSioKeDkp4RjcCeSkpIAkuMMf6ClB2Ni4nfsiEtPz6/QtZWuWlsWl6ap1kdE7CIJjF/42uUDsWYMgV95eTmjikrOnnDaOLbw+vXrFy5cwP7hTtAvRUVF+O8gJBQU/Nra2jZu3Oju7o69REDFXp440V1QUOLjszlie3xKtjrjowWpkcmJKYVkDUG5tFTz2v1CZA5uTMyPaQN4q7PWCgqcFlIIhNeuXcNtgHmiPHfu3CmGEAzoJkwjeTgi3dB38FOAwUXMzSte8dW3yxd96feXjzf96QPfLeHr1wd6ei6PiEgoKVG/XgjBDwWOJsBa46S+3pvbq8dn0nkWEILf1atXZdaQ5NtAToQPzUkEGQElDoIuxdtT+g46U1Ss2rI5PNg/IsgvJCgsJig4MihoZ1h4THBwdEFB0ajzORzrBMYTQVcqQK1QoVRjNuTlbfeVBYTgd/78eTw5rCCcRcAjU4jwMeq5kQRlgBMfUek7TB0+mV5v0tY1aOt1dWy19fWNhpqauq4DXbrGJkTWMcCsruLRUBjUA16NRqPBQs9mFjO6UzEwMHDp0iUxM/hbsBXcfISS8BVwCmWQycHwCAVCjuPaazRVMTFxbMvU5eVaXUlmzob/frfV1N7c2oZZdR5CnkIR3c6jUeYE/2YzixkTQgQR2DZv3gyQMAX8LfNwqLiDGEtAlRg3BdUKhIWFKrW68sjh40dO9h00tWu9vszcHqkztDc1GZyXQklE4JXCsE6fPo09ZoS5RHAUOoNHce7cOZkdQxGQwGw4HSFe/CFUK0YRKcQmoc04Gb8iNjauoEBVVKjad7intd5Q5ebRrKrIKdGUl9eiUkdGcyYqlNQEVwfkoMoobYnTTvQmb+v5Frbw8uXLfX19ME9ai+iAFrknugzLx6jHHKJU8fo9PDyYkEg/8hNlGxERHhwcmpaWm55XotNo1Z/Mr80uamzvio9LzctTVVdrnew78KNKPEt8GNQ4o8cF4eiKFEOIIAYHB69fvx7WB05wh23btoEWL1QQ7yYtTjSEf2ERsUNs6coTJ47v2VPqu2VbuF9I7tyPMrftziqu4XUUJiGGhsYWFZU6E51B9ImiUQd0KRobRYqGn4VJQRtiYCGFFy9eRAoJGUMZiGgjglAGoTAiAegx/A2rFxXwGdRllT4rN/j8x3+G+WwM3pkYEoxnGbVsGfHxnfn5JUw7dUwQGR9UgzAQRJSnsxWX1MVixgywEZo5deoUVIXUoDgVVqlB7CKc0Nyj4F50rrqsYuO3/iu8Vvqs3+qzxs/HZxOz8Zcv/y4wMIr3mxybeMGzoLJoAjQ5j0CdMouVadqzPBYzToANW4hfiJ7E8GD8oCr4iFwjM9XoU+QSvmrF5pEJo8GQnpGdk1dMvkn5yy8qjYtPptMdCKCIC0FN4E0yksjI44+68BsHQhQpjFSmVkBeyDSJOZRpTsgloVGZdWF+I/qapCAzN3lFdNivH/prMLYUJiSd7TnT3DJhv1DeXORBylwmkX6U6muPmDum4WfUVRa2sL+/n6mYRNFQpzL28Qf4CZEBSxAlZZiXl8c5kriQRCAz3Ej5FhaWJCWl6nQGJgQ3dRxUh0Vsfvd3ukaT0dQyUb8QncmgwYsQz48tHIo6uBzBUYeOBYSwlbNnzyJ/sHaZ7KTEuBE13g9dtGgRGXwiW+zj9cskDHqWN9Dy8/eoVETdug+d6W9OStN+tSIvv1jbYGSi94QgRNYBDAIsOlPeUUWjyhTWGTX8Z0hlrKcCo0tJUyBt8Hh8PiyQRGfYoksRRPIDCKKiY9G6JKSCgkIKC0tJOe09droxNrHK84v2jq7M3CJNWU1dnc5+116mjXNPHieASTgbZ4bBNEO6bKZVwwJCDCGCiITJy0pABXnBCCEHKE+ED22Gc0Zv0sXIFoKI+6FSlezaFRsdnRSfWVQRHlk4z628qqmixhAZGZeSkltRUWNnmxUXUIRPuC7WF4l0qVB7/UK0KBDiPtODkqNHfaHWyFTADMHS/L1nYJaZ3aR8yyuq124MDXL3yvhwXkpacUpGSXJygZ9fSGBgJKJpzzsVoAX7xeJCd4XBihTKnGMXi7EXwjPDBclTEhH0IxKAaWQ2KSEb9kcaJHpfpS7/Ztm3X73zX76+QRs2oYcDN2zYumTJV/iFubnF40ZnkOnm5mZceMRaUZgSFyUv7xJB22rMQpGCH1JIdMZqoQ+0KG41oVGcvJEoAkBFRWVQ4I6wbXEh4TEhIdFkqEIjYsMidjPxgrVfbPuFMpcX1wWdrLh9HARO5F7hvXZq41l4mgWE5HFACNpCV5pzEPoR/oKXRvhUxMI8xDXsF7JcyV6DsYXE79DW2FKnKtNVa7u7cVEabDBSrhWfD5tnLm1UADLlYjH2jEhrCMnXE9RGcyqiQxdLoJLuRt2BIl6HzIYSpSopX97yJeVbpqlUl1eleCxKX7c+fEtAW+u+lrFde3MX3jxyjS4lhgeErljMhCHEo0dnwukJSyoMgg6F6BNykwQvIkXcBMeD8JuQRuaXKinfoyfOdlTWNqxdf7z/SmFxaX29wUbKF7FjNIycBSpZZVcsxh78OMdaCoFEbJKiSNmno8nrCtGQSdwke0kaQCCxkURSmFE9lPItKt1/pMeQnlMfGHKg+0xWVn5FxdAsmlH9QvDDReHOVmyFn4RnldCMnc2YzadZQIhKRKRABR6vWDuxVeLjKz0lATZ8DDyQ4UmLYampuWlpObqWzqrQHZUh2xpaDvCWb27u6ClfmUiINHMfc4rLQ8kz8zhQd8Vi7ByXFhCiu2A0OBXwCAFM+lQWDRrpnIlE9vScYLKor29waFhMZmlDtveq7C3hGfkVAQERoaGEqlVWTgX4iZcp6QjzivIvXoRjWLisoJ34WStSuAwsBstnzmUg9zB+TOBYYjGU8lWXkyZc4b06ZM2G8N/9IXhzaFBIlLf3qoCAHcROzSEEG/KRckOrMSHhUCyxy5G3Hz9rCHEKAQ9TpAgHPzGNIjFj3RdBLFVrNvltX/PlunWLVq5bvnHthoi1a4NXr/EPDk7IyECkWOHyCNEeqA/vOm3fTsDFOHLyiyQo5NW4CbVhlp9soUgxhIRAmaCm5OWBkKkrRLlsSAbS2dbWnpi0K3Z3eGzCjtj47bExvEkTkZS4PTIyIC9vd0M9L8cU1FQXaGuLIyJ8S1WsaGC9eA33Jyo7Mhk5y+Gxp/kWEOJRIBywROyfqE0gxEeEfNogF8ORlBaTwftk90fdh+fxd+Lo/JrKucamv3a0fWxo/KDV9JfDnX/r2v+3g/s+PNo1V1sb1N5uLWfiYFhN6bCnAa5zLCCEdqLHIDXmtlCWlAXUsXQpEOp0xrYWr/Nn/nqm52P5a6x7vyD39yVFf8jO+F1nxwfnznwix8+dmdtQ59/aagGhiKC4ni5IJtoDFhASGrWCCuEDOXKHqNOx+ncYAGNlucfe1vdbjHOb9XPZInntzUN/baa/tBr/9ddsmNts+B+N2o8XT62IqMsKThQ55fzx1yOFQxIXRUTGyhgMQ2hSFS/QqH5fVf5efe2fytV/NDXN1ZTOYUdb9X51xXsa1Zwy1Rz+1WaaU1ri277331I4NHvKaHQR0dcDoUzXtLoXgoijTWgUZ4NI5kijSKS6vsHQe3r57Ruf3b7m/vSh550b7o8fLGF765r73Zsed667s3+5f8GjHxcPDi45sC/YZPq3wpQwjcsXfD0Q4q5BXkZKGyqUqClLl5DHl5cOzXNAQFhXZ7h4bsXgoNfgiy+ePxna/uvv5Rcvny0d/MeXgy+Hjvzz+dLBV4v2dwQpEMr4QMSZMuoKxziGooUiJa4G+UTaRqKIdMJr+C8wIzHsowCBFjiPHjtmNLYdPbS09+SHl859du+WR++peQ9+WHS259Pek/Mu9M2/2PfZ2ZOfdh/+6NY1t1e/uHe0B7a3H5XA6dA0YrWaiIwrr+sYftauPRKGKCjfBrCioDIbmAC3rJUAnExMgoZkZmUFB2/rOfbFox/dvr/j8cPdz+/ddP/hzudgyc6NKwvv3nBnB136073PX71cVFW+IidHLeQICAnJEmt1RWReD4QSFKVbefWEl/kEM/NbA7CknOCuRG144YiZNampaWvXbjx70vv5k0XPHnk+ebDk6cMl//xlKTv8fP7Y68VTL448vr/4f3/2fPUPz3K1d0JCrkzMgciQF3RgurfDDX77LhxlPVKZL4PZI65GJHNUX4LeV96VOXasu6HBcOrE0oGLn8JfHt9fcu3SQkjNwMUFVy8tvH3dfeDiQnb6Ts9DQAcHPdtbN5mah0gTY4V8BWksV1DbmYE15pKyMv0ey4eBtB20HGKk9YZL/V8PDi6FsPwyTGdePvMSCoMIvvpl6dA+pAaaM7jowL6A5mEIQY6JjVO25qwz3TSTr7W1KjCyKFkFpsbYEJQDnXxby9BzbOnt6/O/v+3x493PsX/ozOuXF94ccLt3E4vowZHL5z/7+y2PVy/c97Ztbm4emumLiKNF7Z8oPJP7cRrrNs7CzkJExdkYC0WBsPuw540r84ZYzE0PWChosb3QO//8mXnQ1P6z86Gpt6+5Db6AkQ5BiJVlfMCGXHkJJ+Eff21ubCEuPzE2IqijogiEdXX6vtNfDL5cgvD9fH/x88ewmKE/tOizR0vYQbu+fOr1y1OojVtbix8QDs0+VamI+7gM4aRDyANAkdgpskg2f6QDx3IKxEhPn/C8cuHTG1fcoDNXLy4ArSv9C24MuKFLr1xYACMdfPXl4KB3R+sfU5KWd3QcATnYrPIpNiebMZsvH18KpXfgnwRQQJF4t5XckPyLjNp9/MhHTx5/9vj+Z88eLXh8f/7wdujnT/fm/fzT/BdPFw7+w2Nw8PNG7W93RXvu3zf0CjErWCDZLo/CyfFnL4SCIu4gGhVP3HzaPMtDxcUlGPSpBkOkyRDV1BhpMkYbDVFsTYboZlP00E99lKEpimkVmrKQiopcAjtAKG+euiCcOghFo+JjMBsKl1z8QoRyeBUYwjpH9+4d/uv4/x35afF3ZP+BboKs+/YNvbxIAIH4gCsuM6UQij8uC9mJUKJaITsOwIAUMgnYfCEwJ1syay+fgCJV+khmgWLJePNvLJo6bocyFIjPEQNyMdJx+8r2CY5AyB1Z1YTveqBCmW7jWA3kZRoisS6/0LEOVK6ygNBqbvVYt+Y0hI9MBbEVznE4z4dlJdcBkC5G4wyKFhDipWHeZK2LsYCR+d3wUuwfjh3K0GExGn4xcegrz84kC2UZBQfKW7P+ggWEvIxCspDQM2lYvEB6dqR8ABiiQ9aQGaek8p385DHDhTsw+dixz9URX0WIKUyAs104h5l5FE5jfjpbWRXJtgqRQK7t4rASckbyzK+1gJDaIIXAw5ROOKd8BV1mWsgMCUAlZY8/J3KDOAKnM20QUSCrhTSPOjHHRju5ljHEC3WPHj36Ybzy008/sWDuzZs3v//+e77l8ODBA1abo3UyTGVVDymKWKNm8KBkITp2IN68XknhiHnhyPRG6i0gpCoUqi4vp9FC5BLOwvu9CCWCQkuAVgYvrWVQA6GTlkwcEmYC4Cayo7x5Ou4gFQh5D+THH3/kO0W2C+cgTLihOLI4Raycy5qP69ato4EMSoYsRoR/YeNpI5hRwImAIthzJpez9jyP+Pvf791/8ODhsxcPHz+9/+yXnx8/ZhyDrjPjeNyWToCRMpzNy4sXL+7cuYNQEn8BSObUoPQkwEYBOd7eJqfo/PxdmSqAOmV8MFzoa4TDhj2WJgmEvERAz/KFDXuKLDLHmp23b9/mHS7GDZEmIkQ8mmYSc6dFbIffmIxlkSSMPZSb5nMaDaexDbrGa1cHrrRpBk4euLev+tqlfr3BCIpOwuDM5RZSeGVggEXy0TYUPhvDuONFGcwG69HgRYAin/1BcfE8BJT2Ayo9qKgg5EnmakiRd89G0o2xqsuwYOwzIRF7zJINeP2MblHjAAyick9hLgIh9gzdwDijqhRBUfZHFv4lTaMAIS1CB9JA7k8r5CkyM49q8C+EFQFFBAV4Vjcb3l64dPnyqZKk07sDLqQGnT/ZozeaZhCE2Hm0h/ACxibL0LAGBuE0+hQvni9qs+gFaz2xNhRrA+OVMzbBUgqDFDU1/FFRLYlA5IP+5YakG8WQ0C9oY1k6gW4SvMUOUeg+CsJHz0oASKQBLHkQw5+bcyuZq8i1nAN4PIId8GDkUehuCj8ZfxQ5KIWfgERzwE9+IoU0DeHjWdQfowAS8socVhn9TE14KMO3t7eXRbGU0j9w9XBOQat/YEfYtlOHDjUOXzhTFCnjmpYwAOks4KEZyBzflVu9evVvfvObd955h+/E4A6i69AthMcwJBR2iNRgyehutvQ7pgVaSwF4dC+0iIITKTtS+JcUTpCTuZbChETuxoQalBt35iqeyBRWPsPHN9yoiRTWwfHx8VmxYgUCBB7YNrbUn2pLoSHy5RT+RWEfMFhwVY4AJHDy5RtUJQ9CozBieByDFaNIBbj/0qVLqQ/ISV4TmOFcVdXVvefPNyUmNhcVMwjO9PUxXqd3EqyFIoWk0U4pKA22SMzwJ7E7aQyiyZxuaTZHUEFIgNhFKfJT5ElUn8LxZD4jFInWIo4IJaLJQBGWjzDxFKQBUaYoko0uRUqgGAg3RegGR+hKVBxBPsSIBwEebBNsqDACBKgYMLZAxXEpSCewASQ7/ESpcgKPphWIPldxH1lmgxWSfv3rX7/77rt8lhQsgVA0PPUXGUU1nT57tvfChbO9vYwDgdAZY+bktdbLJTCylAKidD3tREToQTEYSAnLXTBawcABLmrugyvGkh0xn4pZNdexomnNiwwR+p1BwHH5WhgWC2xE8sz1qmhXjnAJulG4KKfRHFQIKoemoT/QK4gjYwJlg6UAV/oBUBleGBdOo73iY2AdxMWU8Sf8y0kYnLncAkJUv3kRsWCwo+skGE1fC4qMVorCLJypgcPXCiMFQuCBZI5awJXjbMEMSQJ1IOQIWxBCIUtgAQ4FMKjQTz75BNaG+RBeg3ihk3nKWIX/guIM8gtloCmFEUf/YrfMVxISicGGASGNn8Y8A9WgZ5FX8DCnG+b7gIfMXWC14/PnRVLlv8grNUchMwKgRcgcAoebOGfOHJqvuElCncYtDo/C13KhdXTGXNHREvoID8kKJ3qNMctohQVMoyUXCNkOgTSigBOMGmvKTnFuLrElUIRbyolcIsF6mob/jj8qXyrmC9SOhfpeCxiO3WSceaSwGOjDSOddUobYDFrucJjbsRorVwmEjDkUI+RrZIG3pGdk+Pv6Zm/derG3FxcH9q9491AeOC2KFPaLvQBI+Mub+B2hMSGka+Sbd6N6PBwEVz7tRHhzuj78IRCCqKwKP7JcvHy5XatN3bKlvK4OewiXgUAK0+YS6o8twFggdlgHGA1exJuYgh4TQmQL827jM7mcwOBduXIlenVaHFuBECqBYoQ8jyxoThbn7Dl48AwKdNg9Bz92OJNLgA2zB66yHgSshHgFKRrn44VOapeJXj4mhBgJtKjtSYLwcgQRaj4t9kMghNADDGZv1AJcYgIJj4kDJyezZQiCGT4ugQi0KFScwJP5ymUT7crpOt+WIkXPWK0ta1VLLCJhCyyK7ZcuJqltQCir9CNew2JmUSQ6qBT+Jx8fZoeD6FL2CTwReUHsZOVxuAwwO+DsTlID7bzt6BCiZPCaMfW220PjITtYEfmioXnCT5Kl3Mc8FWfluUuA1DygI5mmsdbQk7tJJIgdBhB6D7lBtiRkSgXEQ+AEdszDFLh6CCL4scNxQRTlKUvt4F1QQPFNfFl1dAjpXGIWhJdsu31yGrqITmQqBgEOAJAeZATRuXQxagqMxyoEVGFM+C0SKSXoQ0SbUIh5EFwwk1HFiIFxUDFO5iqipnAujBmskoKHDhJUg+ADVBlBBDAp7MvC34ggP4GQgcJ9uCcnMwSpLRx7Gn0kO2Vu5GljQkgX0DbbECrCKkl8zmftEfqRjiYgQECEEBRjHMMzCtcYTmDxFFnvG2bEVbhxqG60HDocYDBRUCogoa85QjwBesX5jBtUN4FW1DgYcH9uhTyxlQyD7JgXIOQqJA8IOc5PKrZq1Sp5wZGGUAGShRLLfbOKLQgRnXGDL3QKaInOlHAwYoTkkViQj7CR+nn27NnjEeXJkyfMgUCG0HjPnz/H15a4CaqM+5AoQEAZE4g4WUl63zx3KNMjwAD8EFlBRYoCngCpFAAW+ROk0aVUlTtLhotCY8Uuvln4UdvRIRSyZ8/Lf/QmOlAWwOB24i/CVCV9yB2QHpAYVZGCNMsu4FkiZ5J5gAPLuzKSjlcSIKP6LVJJHDuAIeFguwAbNwEqIORMLmFMoAN4BIMG+XNmKt70oj46hBLhxdiMG8ClC3Aq0HhWxIf+RYtifiSLxHbUAqHgOJdLAXhJO3P5uP0iEDJ6ED7wtl3AjIHCzeVktrQRU4oiRTkTlJHxN+5DZ+AJFhDyw1XexB74lau8BT3wf+MBGfIY9HiBAAAAAElFTkSuQmCC + iVBORw0KGgoAAAANSUhEUgAAAJYAAABkCAIAAADrOV6nAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAAEFaSURBVHhe7Z15cBRXnuf7z4nY2P82NjZiIvaPmemZnh3PuHt6Z7fb4fH0dHe4bXMbDL6wjY0xp9AtJIHu+75VJVWVpFLplkr3BeIGc4O4TxsbMGCD8Y3t6e7xfiq/kM6q0oEEdO9M9IuMjFdZebx83/e7f+/lD37wp/KfoAe++1P5D9sDd4Yf7d88xTIyMrJ9+/adO3dus5Senp7ucUpnZ+fAwACXWM9/4HXur7LDKLt27dqyZcvg4CD1rZbCcznOK/DS7FXR/zrCnqs4Ry/octXu2XNk+/Y9hw6dPHDg+P79xw4cOLZ375FDh06wHT5ydvTYu6PH3hk9ev7ttw9u377XOO2YTtu3b5Rzjh07NzS0pa6ubvfu3dyQ2+7bt6+rq+v06dMXL158x1LefffdCxcunDt3juO9vb179uzZv38/J1Pefvtt3ohrzW4EuO8hpIsDCg+wHgn42d3dVVlZ1d7u5QE0iz3PO3jwIC0Ys1y+fJkOol/uH0UhxMvwXN6Kl2RPXd0tGDZt2rRx40b2lZWV9MjJkyevXr36gVFoCT320UcfffvN17/77Te3b3/1+eef37p169q1a1euXPn444/5efv27bNnz1ZVVR04cCAtLTUuLqGiwhMVlRQbm7Z+fWZCQnZMTMq6dSlJSXn1nr5aZ2NZbl5pTq7b1VhUXBMRkaDT2GJiktetS01Ozm9qGnQ4WtauXUvbaHB/f39eXl5mZualS5foExpz48YN9pRPPvmEhx45coQ2OJ3OiIiIfKMUFxfzs7m5mX7mNffu3Uuf+0H4/vvv02h6XwOCCj8ZCLy/+fO9997jJ4Xj58+fc7tbY2MTbbbKpqam6urquLg4LoEQuZaOUIPM8tlnn9HpfX1904BQgAktjeKhoSGGl8fjsdvtvFtubm56enpqKp2VnJiYuGHDBvb8DA0NXb58+fHjx+my1tbWtrY26KC2tpYGnzhxvNrVnJxevGlky42Prh89erShoaGxsfHEiRO8Jr0xOjoaExPD+RER4RkZuS6X12ZrYrPbmx2Otqqq5qqqlvLyeptjY1/lnLa1/6Nhxf8cLPuXcvug3X7ntOrqVk7jJ6fV1XUVF7toKm/Bnr6ikUBIXx06dIj+5IkffvghiPL0Y0ZhSDGGeIWkpCTOB8sVK1YsXrx43rx5s2bNeuGFFzjiB6EwEwmfP3+eCj8Bj5/UOWL+1L8cczobQkIiExI2gB+DPT4+ntdmaHAJDWKwX79x4+r16wwKbs4Ahy/RlZNCKP5sUhjgwdngAfRmSUlJRkYG8Kxfv549sDE8y8rKHA4HAAASuDJIeQoYDw8PQ4W0jSbRL3oRFd7r6gfvZ+a7H/n50pdXZjjcne9d9B3k1SicSYPpa4ZITk6Ox1NfW9tQWdkIcqDCZrM1ulwdNTWdtbWdxRWDWx3/PBT+X7pW/7ddVX+XV9wDxhyvqfE6ne1sVFTPz6+C4BobG+goaBHkkDlnzpyBMdA8fvIKhw8fpuv4SaE9vAsUSYG9UajQKnqDIUg/LF261A9CRqi1aMyaxfjVbvnZ2tHRkZiYVlJSceDAfoiDByDqeAZkx5g6eerU6JEjvAFvfOnyZUY140tiBmxAxWSDtMnKDCE4zoFYW1pa6H0QgphEVYxZ0HK73eAEkwTpAEaq2wp++AzCg36hnfxk/J06dQp2CpHRaww1kNqz98CS5UlPzIxYG5V17uxJXkGnIZ8AkltBlDy0qsq+bt0Gm625oqIBKiwqqlm1Knrt2riYmFTYaUl5hyPz1cKwWQURi5xpC1PSqyMjk6KiUqKjU8LDN0RFwUjT2MrK6oEQemLY8QqMKuDkdXgoOAGY1+tdt24d//J0ulHMgB6gzwMUDrpIkosW+kHIjaZapJ6oAENpaSlY0mUMn5r6+tlPPDHnz/+cQXji1Knunh4GFzwWMgKA9vZ2EGLQ8TIul8tms3Ec2cDIghMCGCUlJQX2CJ+E+/MgmCftltij6bzGmNTM23ICJMidaQ/wh4SE8LaAB6uEo/KOkGx5eTkQw1n27tmTnlnq7ewBeo7DY2kPHccjgP/555+nWzs62iMi4srLG4ChvNxTUlJXUOBMTi5ITS1OSSnkYGFxc2FZW3F5W0FxS2lpXW4uUPn+ZUtLK0lLK83MLC8trc/OruTtAIkXByRInHEpWgRIuCLvSCcw0Hk6b0qPFRQUFBUVMRzH1PvoAT8IpcJNtagf6VwetmzZMhpEjzOQkSr/9c/+7L//4AeJb7xx8swZcIU1wQxfeeUVXoOhnZaWBmBU4FRcy3ik43gr0AUwXkNgmHrKpOxXzYA6uSGSg5uDE/dkKHCcJiFdGNp0jXQBCJEjUOa775w7e9ZHlzAxXp8nsucnDYBoGEy1tTV2u3P9+hwAY0tNLUxLK87IKE1PL0lPL/UdTOVgEceNfZHlX064swFnfHyGKA+hQzN4CqKBBzHiaR6jB3QLCwsZZzADaJFhBxuAJ02gt/tBOG39ng6CNfNskTxjB07FkJ89Z87PHn/cVlAAU+IIAgb6A0X6iNMoVpVSSjM9a9KZzhmvBLeWuyECo6OjGbZIQTFn6A+KpHmMdGnUcAIxGx2xWkD6y9zTfSi3nJCSkowUZ2wxEKdduJxb0SSgYuDSPAYldV4ZgU130UWQpli92Az1+vp6iYzx0HkwENKsiooKGCPik1fledAiQ0l6AdAx0GgiDZKWQeOsDeJ8aI6O6+8f4ASz9PVZf92pcxAaRVLSuQE34bYJCQlSXqzCg/sz9sGGq1S4Fx0aVHyCnr90DudzFa8GkBCHwQwkau+r0DAegS5Ga7kzFe4MX6WLsCK0B0IGCgyJ3oOjTMBI6QE/CCce9QH/SmswBst2QYgIQWxA9TU1NRwHM7NNMCgKoIITAARDyOgfGtrU0oK65GVrbe1g39HRFbC1t0PEvV5vNyOBS6z3ESeA71EJHrNW6UDD6cRNmzajrg4ODmsb2jiyeceuLZu3DgwM8l46n/vwanAXGDIdPW0uFXCh+LOGOxKEAQc/p6/USxTq0j/pMbguak6AOmO9oR+E5qj0qZ7jFEaH/uEc6uxpB7ouigN1ngeEZlMCKjQIPkb3BUAIPWEFYAtQOXr02KFDh/fvP7Bx48ipU2ePHz9p3U6fPnfy5OmIiCjUjr6+AbrafBkpU9KnJu7rrVsxbAabm9tLSsrr6xvd7ob6hmanrTr11SWjx051d/eYI4AKTUIWwm8ZlA8KQlpIO6Et2CbkDi2qP61FnYxWAX4MygCWMy6EomKzmD9NGoc9MmTYI7S4C8jZbK6CglIshezsbDml4AlqUIBNoiM0V5zWvzu2dnR0dnf33bhx84svvvzkk0+xcI8cOfr551/duvWpuX311Te3bn1mt1ePjGzxeqHFTuvYBELMD7joxOQitw6kVlFR3dLSgR69deuunQePtq0NS3nplZEde6wQAhvvgtIoorxLnFNV+O6cb3rFgISuQKcTucuLNF6ZVInzo0IcPPLxmHtVbt68qT22OYrT9evXsVcMOXcW/TE8fN2cObPpPnAVWQAkOAUXjvPvmG2CYTqdbhjzvn0H2Oiuw4ePXr9+84MPrrNducIzb5w5c76oqATn4rVrH9XWNoJ6AIRwPIyTMSGUnim3Dk7c6mong6+jowc/5Y7dB7Z09be9sqSsqranZxh9y2QSkAuqI+TCqw0PD6H9IAimXbhcign3RyGAuPkpdj1BmZT0/SCEwuRONfcBP6UxwqPpCzgAVJiVVYyDrbPTC4ToTrQHVilNL6j4dNGxSBBQtzU1tTqdnvPncQlceffdSxcvXr506Sr79967wv7atZujoyfmzJnT2Nj8xRdfnzx51maraW1tR6pZGSndDYrBjBTw6Cw8VfLAvfnmUsyZ8nKHx9M6PLxtePchb0x8x/rk/ApHW1tPR4fXCiGeMKQD9+S1du/ex/b22/hH9ht7X2XXrr04GDC1J904k2EHzXF/GCPEjcY0gZCbFDyd4AchCm5tLf5DnwvxbtHP749gx1BQWOgRw91VhloBlrQGyez1IjP27dkDJR3GMWLd9u/Hzf+2YXX4qaM0giMOR112dsnRo6dOnDiHUXTsmLYzbKdOvcORtLSsysrq0VG4wIX9+0dTUvI8niZURPM9GVVwaWxNq9CSw4HWomcZfjKP1NG8vOKYmKT8/AqXp9NV3ej4zczqirrodRzBjdBqdiu3Qt5zbVxcbENDR2Njt+HF83o8Xre7vba2hX1X16Zt2w5t2XLg7rYfCbN1K9uBgG379iNIvY0bh2kqDAkfW7Byfo+wjSsL710jlT3H+bhKdBVdEx0dhZne2jqYm1sxOIiJtsO6DQzs9Ho3eTwNAXoBQxLadrnqMzIKR0dPgtnRo6e1jY5i254Hy5SUDITfpUsfCt19+44kJmY3N7fxdPNluA82ADq6hrmOQz04d7AU4X7wD9mjWJ5VVbWvv76GOENOcl7eL57MXbY2o7B66dLV69dnB4wMWgtTCQlZU1RUVVrqNuz6Itx8GOzY7ykpBXl59oaG/rq6bm1uN1y6tba2i9FCvb6+1+3u4Xh9fQ/1oiI7go+GYReiPYix32eZvlEh5GiExAxcND09jb7G+VtcXINXno3WGy/QwyvxGvj16+o8Ih3RBx1Ejzc3NyUnZ+TklPpDiD/zPJglJaV1dvZduHAJEgRXjkDQycl56elZKFBW5VbKOuapuoY9XD0qKkpmvoVed5ZXOJa+surVZ55d9fN/WTlzwfLQ+GXLQl9+eVlycmFtbb2VuDUOiFyVlbmam4ebmwdbWoZaW4eNbWNLy3BjY78Bz52toaGP8FN0ND6dbG1EnXDKFBbCpUdyckqWLXsTKQh+EGKAZj49LP0glA4pC/1u8amR3/8wtErrT7e7fnh4I8oxnj0Evtvt89/znnV1nQw63PnFxfbKynqGJC+JgxhhdvjwIQgCYQAfRjIhElatWhkeHpObW3748Ako78iRU0eO4KHAIXAKhyL4EfbgiHEcFM/s3XsYP1RoaATqonUg09cYcGgfEofAho8NHTXAwQhCvGJcXEosW0JGbGJmbGwy2/r1aThCm5vvjACzQw1nd0N+fqUIi4FYVOSqrMRf6i4rqyOWxEHGa2PjgFHhhGb+IrpEjInTdCaxRuKFmZm0rpAhpaE/PcwCrvKDELsNS04OHgxz2ZvsMSp0ROa5XItUjh4dtdtx6+Wg46EpYDFSLyhwJCbmElspLHSWl9sKC/NAMSurEoWfaEtKShpef6Qm5JKVlQXt8j4oQfn5pWlp+dwe2EALUoPgwA+f1Llz7wGtAaFv4/jevYfi49MrKuzomNb3oa8hOxw0hnzdyZ2RN8b9A51BCEQsk/6BQSrmRmwKlRjRHqAzMyDi4+OyskoMjtIFHlARAQr2oaHx2dkVDNa6+p6E5HzemhMIMxlMlYqPFWmjTmSqrMzJy96/CjOuLJRvk9gVxgOOV7RDhXyxH/iLI/yrqBsHjcrZ+vq2sLCYJUteCwsLI2oYGbkOLhobm15cXJubS5QZyZFZUlKDLxj5wbutWLFq9uxZeLo5H8VAnjDIAhU/OTkXCC30l4bSL/y04Xhij8pDXCsuLg2hFQAhLwZakDXUifJs2l4BwxbTfmBgqLaWgMNd076+Ef6ZnZ178OBRpGYAhIwMuE9ubhkYEC9kILLnXYgAGyFDL6GUjJSCFS+8vnxZaEGhgyOcELw5nR0lJVUjI5smNfWmRJ1+VChLTgk0qpg/zYPWIxgDKSk5aWk5hMHhV1BnYWEZsRheFRJEtYmPTyYowxuywX8KC130mrgo/QuJoLIbscOd5eVEZ3IOHTp25sy73d0Dixe/2tLiPXuWKOhxJacALTyWTepMbGwqnR4MIRSDDQC3wv+AzkysKtjGMJSvAZvN6fX2YBjs2uWzEHbswGNSuXEjTu0eCMXaiZw/ODiQl1fhcLTzFor3ElEyIvItQFVaUhv14uvLZi6YM3MBL67TxtraiopsDxdClPKpFmJy+GRQjpFq+Gjw1OTnO4jxASQVQqNEuqmzESzlCP2OGgmtGDrC5tjYWIxFVMSyMntCQhYUhkYaERGdnJwGR4XmDAhh70SIDhJ92rIFVWj3wMCmyMgEyCgYQiiGG8JL5W+TSSc8FBxm9KA9lZdXQvdtbd3kKSE0cYVy5+Liiu5ukjm+N+1NtTYpKREFiuAr4hxs8vKqyI4hihsWtp6ooau2szSlcOlrK6NiUhXWN/Ez6wziysomZAqZPVMisklP9qPCAA+8NbYuK0InmBXqCq1RQQkKCwtduzYyO9tGqI4oKBtBTqKj2tDIc3LsDkeN2e90LuIQpebAgX0lJTYx0oSEFFP+HTyIv9S3AWFPzyDcjwAizHLr1u3kFNXUuIMhFC9F0GIJQOLyt0lzxiiEKHFBREZGpKVlFhfbSKDp7x/p7d3U1zfS3T2cmZnf2OglmytAdnKHiopymme3tzAQ2RiRvA4MxuArtagqlWTTODsAjCGL4ZGVVYHsZyPeC96MaVQEgv7Jydnw5AfobuV9H0ywSZo3LCIuLjEnhxZXFxTgO/XbCgtr0tLK7XaH2e/0LMFYsMcuLC0ls4FwdmZf3/C7714+fvwMGo25QZpbt+68fv3Djz/+5MMPfR7ADRsy8HSP6UtT2IQCOyV4glCE3LHDcNxAoDSVHiwqKkcTQUOx20mkIIEKvdEdFhafmVna1NRidfrI/oF0cnLQdn1Re22gqD10aR6kAsAYjhERiStXRoWFbVizZl1o6HojoS0dCNF7CT2OF4KflODGPOGBQSgUcW0gHVGd6bHgLTU1lxCIxiD44SVBHGLbwVqJri9cuGTVqjCbrTY/vzx4S03NIQEJ12hdHalytfQLEFpNe6sNAFQwdmCD8qA/HMqoToYL1+eQg5tUVdW89tqq0NBY2GNSUi4UBht/5ZVlGzbkELsIoBIGSnFx0YYNWUBoMhXQgt+QPgOdUTePi98EbAZDwgIhzSILZ+RD1EinNwr8JT9cbgtZnMEb6hFj2fSuSe/AupCBD7QZGQXJyTkYZ8aWHrAlJGTExZHMmeKz52JTMjLyieCO2RdyGUPfkZGRYAk5knup0MpdobgL7WnFiuglS1YvXx6pbdmycPw1SUmFLhepun5xJZqampqCGVNW1oCmfXerKyqqxRWQklKEvLAc54S68TaciPTPQ9RI7x9CsZ1J/e50PX5nfI+mn9cIxHD1FkPaT7LRCxNbV3Q6gpAEPQQt8i/AjyXPZ1padlZWAUMBEagtOweXfUKAu0DC1TAxcZGXAJi5kQuDsWTkznx/cIJ6cjKn5TC4HyKEU42DmQGwqWKPMECtgAStGv/E2Af9O9EzoWzAW7JkCQ4HQvnBItNIR94JHRM4ZCPhY2DjyODA4JHDRxhVwXkq9AxOg/p6D6nC0964HCXrQTllTG3ZTxbiZJnSRoPQFKY6pqAJItG4ngM8nFMdBxOczyOgM4JT5LHd1Ue+P12mPRlpBQXFDQ3NnvrGps5eW0JS2BO/2HtwNNg7oysN9Ruz5H42RIbf/JP7fGV5oPwgNIJExOXJezhMJIzYGEeMCJmvHryh4pPTNaVZLgp4osUQzJo0Q2Lab0h3Q0y//OUvCTBZpSBP57Uhyu7uXrvd1dXVj7m5d/TUjs6+toUvlOQUbNy8k5S2qQ7Kabfzfi6kkbwmKpsfhBCVy9Vit7vZvN6Nmzfvh99s3LgHr+ymTXv5yV7byIhvPzy8p76+aUoQwkKxuInqPcBsouCOMHTj5scee8zkogqMMHpgoWVl5K2UYtq3tHRu2ze6ydvXOufZoWZvsc3F1CtCng+W190PThNcS0+SPI1rxQ9CrByEc2JiHoIabwK+9rfeCscmxQGBo9bwnOEVZHoA7sEOKngr8GgYiZ++rNZJ22pGf9BlHqxiHfBoIicYFVChuKjiYtiIuE8xMMLDwzDt8/PKnA0d3XXN7qdmtNtru4a2G57CVkz7h9q2SXvpXk4APyIEqGwUPwjBBqjwuxMYwo1bXuEJWxVXnl0THZnscLZjCxvTsdKio5OxWLOyyvHcx8TEJyYmcDsYl/wg47VAuhLCiZPxbk9VdRrv/GCVioGCIxdBuHr1as2aIyQJcnjdcCPgYPP580ptq8MTMkLj7E/8uiy1oKKmvbTUtXbtOvTJhoamB+s9uRdIpnQO/YwvHscWTuA1a9b4QYhDiEgKYeicHBuejaJcx4yQJc85YxctfbOq0hck4wRcSvIY4eeFUpkW48Sv63AQw0TwEDeXHzK4TQwc3CU8GA1IOd2TFuVZT3wat9JMVWn/milCGAQSJN8CZzf+WyaYYYPKR2qIkJ226rrXnn055Ic/ig+JiU3Ji4tldkvySy+9AQcKNu2n1L8P+2SGrJxN6PMwUvrcD0KcQPga8Diw4SUqK6oLy8t6y5kRn5ZbXlKP908ewoqKRjmv8ZmRyqdpTfQOYxxORY8H5xPwL/YWXUmH0ggmrTG/ggAWc53YqxC94iBhLBVNMuWgOa+TEJj1BJ1GCAwUNX2L7sMpumDBAibeYXSqN6F7ci8YQKaSguVeaXcte3n5ay+9uXRl1NKla9neeCOELSoq1enEb/cA8iEeBpZSYYiuYyzh7kPSo1gEUKEzL8+Rnw+1OfFz5uY5SvJrS7NriwoI/lUzW8fYf7+lp1cQXTJ9GQAJFYKirAWeB5Y+OblnD7ARlICF8lQE4VdffcVEVkUigVP4EadkVimpjirMJ2U0wCvQm5VjCfdgpgjHzXOofPHFF1DYokWL5s+f/9RTTz355JOKJHMhmXZIRKRFgE+SXiDU1dDY3tUz2N7WhVfdt+/AkT7S3k7+ODr2w51KPm10eRFelvwgrGrqvCnyyw/C0lIb6sm9b4SWyGCw2jrcF5uaXiO+T9fjmcS/xVNXrVpFmJch8/rrr6MT0vUkhkI3oEKX0Q6YHhKLgyCqAqKaWwR4ol26nmizplmbhaRhbrsSp3JUFO9GpgUjFL8M3UROKSKQqwJULX5iyzODo7i4lEQQhF9DY4unoTn5pZcP7j04NLQRUTrtXn54F2IdYYkx41f+JmxrRUP9ICS5Cq5I6AdOAjCTbkb0KVB/4UnYDIhGxgjgodwDJA/Gqc3zYLbMqSDDWBhAiPBSoULFig0/CUkw/x16pYA6VzFxWQXkYLC6ijGhNBEgh12Hh4drTiHeA3OxA7NnxRuYRIGnm4gjgUv83mRz96Skp86a079pO9HgCbLfHx5CE9zZUMH2ktb01ltvIQUl8mGnHAEAPwjpd4CFjCAIunvM+SUTvwOXABVEADXwVOUNI3iN+Zg+aQRpsofa6HoTM2tFx4Wr/AC0hAqNhrKVpqx0DZJ3OAcgldEqdyjjhhcGuYULF8K6TRYqi15CemhosKrKYbfXuN3NO3bs3c62dXfH4tcqSm3t3r7uLlYieMBR2fsEnpbTq/gLlcOvTgZLac6BIV+59hVdQ24J/3u0k+hozpdbUhkVBsu6E1FSrFjzLqAhk56AU3XAMFUbKigv3E2zRqBjrmU0MAI4wh5q5oZcwuUgh6JEOAK9Rioo9Ic4hBbhNhLGCGmUGt6LCMaaNaujo9cBIdAPD20b2r63K6eofU14scNdX8/s86777PEHe7lspNdeew29zMf0fHmweyEJhqzcI4HxQp1B10Ok6KwMas6ma7hY1DBB+zhHOhJ9TWfR0dyKjlP2AwLPiA+k0cUACTDcCjmnCb30NZfDGLVMgAq4ghA4qYjmdJBBoJMBG17Ny2jKDnViTEhWSJbG6ykIfygS/RtfBtKX0DTTbEn1JGfOVdvuqO90zJjryC6NS8hMTy/yeCDN/1/UGWkAcDXmcMvsBgK6CzoxpzYEyEI4qK9o/oq8qHQHfcGIhl+RHWPVzgPgZLzQR5xG6iLwAycVFFS6T8umMBpYdQW61FxRgBSEkD4jhiZaIQQbpUCyOgVZ+CTPacoVGo1+CmZOI67LTQAP7o0tgbYpytPMfQYvnJwXkeXDS5Ek0NjY8uaboWtDYrJS8rJ/Mztn0asZRdXLlq1ljQNjds6DdEZPmyghJHobTZBOk1bPrXgFlBoJJt3ZD0IZ0VjTmuhGRTM6oRuGM0CyTIjdXiVHSXDLGC9oE3BgCAI+hokG2aHrQ4hSIoz5QcPcTcqIVvGRVqLMR9MopMJBGsA4wG+AbgnY8FVaxZ3Zw1q1LgqXQ16MUwYmo4exyUvywlReeukllBpYSIAsQCbW1nmWLwt/Ycb8ZY//atm/PrV0VfTSpSGLFi2JiSE9wvlg4wnTg1DiH9UM/KztpxsBAmliQuAHodb4IXcUc42RrkVYsKaxxpikRpfhhVq48HnUd9Aaj6nSlVoPC+JDSkEKDBnsB54tCwEkhBY0JNNe9GTFT/9qBSOeTmO0so5MSZqkvQ6CsfwJvKpIDULEuwaEGrYBnaiQb3Z2UbXDU17lLq8mwY6sZTKzmkpKqx0O1x+dCulbhBH8AzcT495Ei4YxIgMyK/0gVIcClZGpfdRcQ4gehCY4kpdXSRr8q6++AmmO+Z70IMSHQgQDpBOhFVpDaAlCgXRg0XQuIwiaU54xD4IlaiEfLTBlFh2Rsor8k+9G9CprRGdyLfgxRABGC+ogbslgQ8GBdq2RJhNIWk4bWHCNGVsk+2DakoTf1tNXnpG5d+v2LdsIzky0PMH0qOrerxJ+vALyz4ofd1CcB8FhHZd+EPL+FPoapz5Dm+5G8UPGUKGbuPL111dERkbBysYjQcXW0X3hY6iFYqr0LIRIm3A0QxmwRy12hBmHoNVCJfBAhgWAmYvJMZg4kxMYBzKAOAGtR4NArjUKcCLqAAwFiukmPBpRwRN5HKeNOc44yK3q65tzcwt6e5mzP9C/bVdrbmHMT/93U0PryJZt2Md/LAeN8OMtAugP/KTwI90D5mj6QWhdEEILP6CL0x0ok2AAXefkZPPyE4dqYWj0OCYmTm14KZQnNxvcAC0JwBgNMFKtogWTFMUb67/4WLe5wBYUxnG6W2yEE8QnOcJe+HEySPMgeAsPFW9AF2WuKA2Qaq1kVzFYFWbBkm2F2sK2m1Tuo6dHHHXeF152Vbma2nwLMdDmPwqEPBR2YswTWhUcv6Mb0UiC/YV+EJoBHZkWFFCUmcieDjLz+CZmC1wIVLSDPV1palPcX2JS87zN1fnEEs31z7QKGgWiNLUeLgF4ihQfiUMtC4fOJauf57JnkOJp0+xL2gy0kDJDEJYAP6c9EGtoaBgpjfjoN+850l9e3TJ/4cjQ1qqaBperobsbVfmPACGtpfEInTfffFN6Q0An83YMVphiQBRhbLuQXoBb6oUxIfl57wa+SJ7W4FTDIoQNMgIY19wBCgA/6rBBrWgn5KTLUOegigBGJjGGNCGd4QkX5eaa3cFPLuRM9kozhOfTZngyKtwbb7xB44EKLGFKqHC8PKSJgMDsaWjwMEGTnMf0wsrmrELXUzMb3G3N3qGsTLKwS5iIS77kH5gK5TzCIsIFI84RgJ+4KD0ZnKwUkDuzhxFNj/DOvDD8U+NaTgFrmVQ4cwlMGMmHFQEdYFZiKTKC2IOE5klxc+BUANNICPaxR+mlUBzLKNJcWAfimb10YC2Oij7JX4Ic+BlnUDxthp3C7Yk0Qf1cpdvSI2Kk4qUMYeBn4vyaiISI5xaX/uuTRXm2wvK6wkLWvksg/xqgcbD9ISHUqyF0GHlQS3Cojt6WwRaQ8zeGXcgsuvXr4+E5rHOF/QYFjLW8L6s+dN+LIxjs8WZBi/QjfQcM6CwspwkA9DtEplR5GgfGCkIBiW861dZtvbU1xNphmvBMmRzfo3v3JyfDRVFoubNwYkwocRsdSrxoTPsVHNFA16yMWvw3j6xdGRESsSEkJIaQ/Ysvvh4ensgSSA88W3eCES/OBP+kZ2D+wSaQrmX80XtwkeATAhjp7kOHjh48OEoeG7lrbMbSDn4bKV9Mb7AuCzFe++hEeUywFJFJWjxDwwIC0pJskmeShZAmTJZl9XJYRiM0pK+1df/Bg9wcfUczUgHGXE5KGhA3oRizq0a4Pz4EKBIiGxM5q1FBBmlMVMKK1TEr18SsWhm5cmWk9iEhcbm5hX8w0x5gUBvRX9A/tTzbeJ0JcpAgmmCwjPSDkMS13t6tTEzv68Odv3toiInwTHbZRxKbuSHUenq2Emab9D1lYMgixJyQKgupwVqliwoAFX5y0Jh32GILC2nu7Nq6Ywf0BHuEscPV4Y0gxAnwYWQeNh+31cKvjBLihXQE+TKmASqeOSY/JP4Bj2nv8HZ4u1j55M7W1tHZ09fV1UNa5R+GCuEZMCQYFcwfQW46zMZEkRfn1cZc8sUPQlZnZCZqTk5lSEgsCTIZGb55rSRYkKzG1Fb2TJ5jT+KFzXYn30IyZswi1zMwoBDRAsShHLAMJdOcwDTEX4o5IcUE9b8kNKQuYi3eue6+frlmuAmEJULUgpRcQp2543KWwmEwFkkEAkugpVPQYpCLCA9ZIAFEyUHyffv7N7LgAmuLMzxsdoetwh42f8HGwU07drIcpi8iNqm8v58TAAzNSyyK/pkYPwV8cDKPmZflB6Hmkufm2WNDkwvTbAkbcpjqD5xkrZFWw8ri1AsKqkluCwkJJXENNU/+64nLq6++ijWDlCJwj8aFPgI2dD0Ya7VByIvXgMdCjETot/f3bR3oP3DoEPhRpLXK5BB44sC+NRbPnAFI1BbMBjADbPpCTgCwRCOF+lFWtTwBWLKXmUguR01NfV5ePlxBafkjQ8M1JcXtHd3Dwz6d+eFByJ1ldNFgOlB5PROPBsYc9GouAxFwsh+EJK5Bc6mJBU/HL51TGrZsZbijqpXENSYfM+eK9DVySkl/YqpVQkIyeqKW0Zu4wOLRQulKZDVnvvjii3hPQEVgQFL0uwYXXQxggHP2/AW8tKwFjvRWIgwDFmoGJ2QeP5UJgAikr7kVfTFjxgwwk/NX4QjuRmdpAWuIUvlC3Efr+OGsJ5ubIxiTcAhO62JxLt9S0l4G1cOzC2kSDcNJRp+AIiNb7ZwYQvoHTjveCoF+ECLMQbEwzxFSnLmyMiMlvaii3Jevpnmtd9PXGsiDYvkYUjQUzZq00Eq0DCCEH8pJBgFBPRSApEguwhXFHlX4yf25CsbLJQqYaJVxgEQqsOfRUCfqHB59uoOBQoGgFW2ma6iAKBcCPKMYIGGz+B6XL1/BPEWZvLgFQPHEiWMDA/0OB2nsPlNk0m6dBhelSbQHvz+UxxBEtt1jXsQUICR9jTm67Itza0tyagryXfwM2MhgS04m19sx5vTMMV+MhjLMlXRF78A55VczixgmWErgqVCXgDSd4NTNtc+tl8AqZfPR7xCo4QjMUXRU7VHfiZFyEFuDxIv4uNT2zk4GEb79ujo3q+xHR3MpkqnpYZj2Mv5gCTAhRiS++PFidsF9OAVGWlJSeQ+bL/GQqOKUIjL0L54FGB1YwhNAQt9hoGAeiMiwCoScClTImZAgliJkBEPmNKQahGg9DXqFH/KvMJPygo9bn4MI7g7O4TgTJ0JC45NC1lQWFFdUVsXGJpE3K6PiYZj2DB3eglbx+rwpynNwXtYEZM0bMe4h38nVGYT9vWyo61PCj8bxDuiHdCt6KQJJK3ebqxOBjVakBTYd1yrQ6JkIPCx3raWPaGQIw/S01r0Kl8AeIUQTMN6T/iJOMt46sD7TvhkNNu7Zx/51ycvLX31t1bJlYStWRC5evIxU4NLSavzqcgtMu1i9CowqYEO34jVpGBUG4phgTIAiN0QtGHPZvQc5135i8cCbKPeCN4ENmhgILfZav9ss/Ay2HUW11oKxz5gIEF1KEGLYjkmIAIMelJmRtyEpe0NC+oYNaWzMDk9MzIiPT8nLI0tjaIxFwe/5EIDpWydSPlGggA0OBGwoVujP47lgJuhAeg99LXgxMi4ZG0JZ5QF3NLSDcYP1k4p3XoCXwbRgDIIZCKlYwTMPqmIsme/70JTsTiEXcI6CjgHOX54FCdJxtGrMF5GHAdMCiyJgI4+ULOFxtr6eHjb+1d5XITg1MDCMsnVnGxzuH9q4dTPueN9nveCcaFg8DixhpIhqXuRe3JMB/akgD73HmwawQD8IZR5gKvAkirkMt5b1h5uhBWzZwpIH08wOUpYwwWR9rEXrRWvVNyk48p+Z0EKv8F54LCTFGOTMYPy4lnsyPK3eKWCj+4BwzDVbab9BJUOsFssnD1is3Vi1va+jg6Qhs+JlHXfjiK/COa2tqvT4V/pQziEPlt9gw4tJVk7EjFnZ8QknT7OGMeuXpQIY8htFRiuoTDrWJ/CxyRsgq8k8zQ9C5fopV4W94gnKo8G3TDtycsoI00zbkc9I5JWQW9wctCApZCTwMFzQs+EwWrjPLNgP6DjssR2tDtKABcS5Q/Cq+xAi0CJHgx3/vD9cjuXVGaV8SIoF5lg1jAphj9OnSf74vsJfOmJUCI0Rqb7Emraq8BcXQrWGGkU4Ggt9+84dO4c7vcz/7uruh+xwQ9JvhCqJu01qwk+Krpzdyk7ibmIwfhAqpczM8tP8I2J5KJDASSeyfM6aNWtZkGx6hEhvQlUMJdRILeXP69GbSGm0FfaAal1UH/wgOzm4haW+ByCNVEyYO6D1cOcA7sRQxeS3qjlWNzcP9XiIL7YYSw6zaiaj9h1WdzNWHfYtQsyqmforoHLixHlWg+MvKpx88OAJlqKSnWr47Xp82bP79zH/h4xlnkKbx1sKblLAxjwB5OgrOCrMTHHcwCRExBWCV74PfUzSSEv0fUMFWomIiMdVMg1prNYwapAKPIKuF2EBmDQUrZGpgyr8pBk0FHGCSs1Apj2MAOxxBgGFcQ17h5FirtBan4zZRu7hnW337sPkzhUW2qmYB1UhvQHp5XSyXmjtvn1H33778M6dLDIASzikinGEuIqvwvwFa4WvUBrR9aNUOHnbtn1NTc0nTxw7cvwYHwgZPcLrHIXyYNG9vRvx8iB9YDwTJPxNA0j6H4mI9x+mGjg5DdkzcbnP5cAFIcNCWokglIRjz099X0OFn7weAxn8IDJoFJDYcwQsqSiiy63QPFkLlyHZ31e0cbhgcKBgoD9/ZFNxXe06d13MyKaS4aECcxscyGdrbWUCRiUxepaeJvDS1TViVLbcrWzt7Nykv1QhgHO3ss1aYS0CwjuV1fU2UoVmzK6017F4d25uSWTkhsbGLnyQOIOCFZBpwGa9RF4nekxpSn5UGBCaH/Pn/TyeG+rzGYwjpBdMQILKdEPr+3wq8EzZG1rNlj1IyycH4ZrAK2TDxzM6OppOH59z/crTH1+ffePqrJvXZn375YKPPpjz0dWZ/Lx2aebVSzM++mDWl5/O/fbL2U2NCenpttTUAuYIt7ezRPPg3cqAKkzAslY6OljDmY+hjBgV3186wmrjPT3bOobe9jw1uyUsrqOflTa219ezFCMRAjeLlfOawcLY8BD57E71sPT/eykKuUAGvDImMjE49ICJ7EJuKk/j9IqutUIOGaElKrYCh4QJ4LqEKPVFHeoAo4lLknzwcK01LdcMZAcTZgRAiOaZnMbl+Kb7+tqOHpp3cvTJi+dmXb445/xpMJt79uSMD96be/zI08cOP3388NOH9z9189q8b7+c39LMRwRtrL4GeE1NCA70TFXQPP0qHo/vCM/0eGiMKt8fAc7Wnm21sSk1//zL1r4dxl9DZH2wGDdreSMCrHqyKU1gHvr6F6+mnMrgb19Yv/6lOqdBAPjH0ZLQ1KjQhwiUcSGk9wM+VWWmKN5jhQfr64YmiogEhBZQQUaAxOsJLSpKmDNJkAqMVMmrGAz6FqXWSmXocVupQhQqRu4oXy/wXr646HdfL/zyk4Wff/zc158v/OrThV9/vuj2Zwu/uPXct18+T52/2H/zhQ/CtLTKB0CFnSOd/TtrHnuiNd/WObDTINDNtbXtQFhd3aBvQAfwLfmsDeC2tLT08LFhrABlr1uLjmivlAbrORxBx4Qn4UAeA0I5haFWni3dDz5m3UsHUZCBwk9T77fqI3Qut7Jm/3NDBqA+QiQSDygB5G6mgHK+8jao8Cx5p3QyIpDByLyr7u7m08fnX74465OPFnx8fcGHV5795otF778z9+a1+R+8P+/yxbmX35178fycz289992/P9/awmd+K+4fws6ht5s3ZNQ9ObNz0z7vHR67ua7OB2FVlYdUXFN1N18NhzwpXcTvWJ2VtSeYbww26kkzdKM6OrH2inWbR/gp4la6iR+EcvYzxmFcOPsxwOkvObp0d+rci3kXHKEf5f7nJxPeNRdX5VOjcJDGWb/6xftoeiqKJTyBwXiPRatscxXn46NiDwvStTArVBvmU3R2Nl15b9HNG89Cal9+uvDTm8+JHH97+wWo8MbV+Z/dfO7TG899+9Xz3/37IiBMSSk3PnbRDxdFet2twKh1xFdpbDQrfG5CR6wVb3P3Vte//LomIbO5czN82DhnoKqqgU9o2+31Rjq5jwrpVZx2GGNsqKkuF58+IexVyPdiy8sryPOAXn3rwBHuMoqvdg+FF+dCPwiRkPhS6WL2zIiAjLgPfUR3A6p8NPQd1IB1CU9DXSZvh0dC16TtapKKSF51RgDXsmdwQHD6ogyFVwpObJxAmWKs4NXUEsI4WvU9P0aDovA+Ut75dqe36YP3F/3+t4tglbDQf7v9/O+/eQFCZPvt7efZqMBOf/fNC7/7eoEgRBa2tQ0JmLsV5JOO3KkAJ0fgkMGVxrahpnxbzRO/bPQyV2SQzTgHc6WFb1PYbG5xINmLOHpYqm9wkM/tkXrSV1NDELuV6HVjYxvJH/pUKGodkFAM559f0aelrUX4sfeDkFRUBX0oQEW/Cw8hpI91K3uTcAkCGSxBCHEFK6MRHGEQcASBh00tG5yIgTodsqYgCBWPnapmK4C5j/m9X57CO3AfUDxw4HBnZ+PBvTPfOTPj+pVn378w5/ypWdevzDt1bAYs9MiBp69cnHvu5Myjh56+9eH8b754tt69Ljm5jG/Nt7ejWKK/8EVKVVAZ/CqNjb4jKCnBlaa+HfWLXvGsjmrq2QZybMY5EFkbqSqVlb5UEkMq7WLajc3WkJCQDevOzOSL4MWkrebn25hmVFqKZ64FAcTUH01L0hIg1r0yMdlrLQJltYML4xiJ6Achyh78CgxQEzT3RckpsE16itbIqwk20B/MjR5kSq2mgsr6Ubxbqbrgx31w8pofwFYMfargmedzZ/g2gwNbnrGC88X8LjpftIgIX3X10otffbYAEgSnT28sYG/oNYuoS6lBLiILUXnyc5eEhqZChXQ6aiQMkArasdvtVaWuzlfhr7sVsop05E6lobGvrrbD9fN/9tgb6zzdDQ29bMY5/aDFt7QrKvjCoo+REtsib4RcaERBSgpLmJanp/O9oDK+0cw+O9vOwipoHnRysAdYel+w3mA1SwKzuXkqtAKf5MPKdLfCQKAIrjiaUf2VCchMImYZ4iAgiQFGCl2a0lhSV/KZJ6FVaiZGgIExbSAZegw1TfhmVEH6xjTSmqSk6PcuLLx141kA++zj5wAMRgpmH1+fz54NcYimAzv9/e9fKC58IywsnfWcoT/JQirAgwhUBVD1192KTwQaR+5UYJ5ObInfzIIEhS6bcc6A3d7IGmfl5TWaWiWvOp9zLSioYOEI0gOYHMB0xujoDXFxydRZ+w0P+JiJSPA2RBgKoxxYKtShGdABeGhmjDkVjHQoDPKCkpRqRtH3lKXUMF74qcCC8getGaFmHX2XLuZW03OoToAxLaR3YOZgqS/xYdqTu3T+9NwLZ2deu/zsJzcWXL00D/3lynvaz0U1fefM7FsfLkAofvfdwpaW+IREDCxyXPlSs9Uu7B3fLjTNwe42JN/ALue8RZ6wuNa+7ZiMCEs2wy4cdjiaWawOu9CcHWco3r412tnQSJnvnp8PE8lBnMl4VipQQKH/wZ5+AEJuxZCVBk5/fv01XwA8+dOf/pRpzGPbhfQR52GBIR3J9VchsURFP/lLtMjePMda4ThUiwSehuSblEaVygAtwhVoLUYFny++cXXhd9+9+O/fvvBvqJ2/fREqZO/bfvfSd79/ybc3fv7+twtLS5aui81nxXRD5+SDPJARiwdaK3zqznekttZXAZuASkNjj/Nnj3tsfEO2DwUAemXTOSy5T8ImM6L5pLP1S3/0AwyJYYdtjpwac6aReCZ8Tl57ZX9pQgUea6msSvoiIAF+3G1c0165qn/913/9V3/1V+yt5S//8i+ffvrpl19+mexpFjx7/PHH/+Iv/iLgnB/+8IccDFjXfFJgpnQCg4yXubtA9IHenuZjh2e+d2EWuszV9+ddencutHjhzCy8M+dPz2I7c2LmhdOzYLP/dnt+YcES1nBYv54l9H3SrqYGpSyg0qYj6CYSln6VtuHaDZnOXz7l8ZIUyV/olqwg2WWcw7wid2RkYkmJ0+pSVp4fdhG+aRhgsNfGfHcwI1NZy01TYe4DVgkbcOLZxykjnQ6fFHmBqPfjQgirxer627/9WyD8G//CkZ/97Ge/+tWvfv3rX7Pg4E9+8hMACziHI5ymAMKUgJnSyYxZhhpCOjMzt6Oj/tzJuVcuzr52ed71y8+igl6/PA/8kH/vvzPn0rtzUE3PncLwn//7b+Y3eKKAEBUxyC4MNBDHMAfrvM14ZGYvcIXEYBca5qCXvcUubIQKi4sdJiOlE1D9cHnTVHG4MV/TMB9x2HaSCNbRgTbLnLKDTM3btGkn6XxdXYPPPDODXGpWRYJy5s6dCxWxHxdCJZggb7AK4JnWAi/FanzmmWegQmaFKWlarNUsXGXO05wSKtM4GRRJkloXs+bqJSjsjkdN5iA2PgY+Ourtz3zGItopPPajq7M87pj164tYsk2kBicckwrBpqbmDhV+X3F7PdVNjn/6uau62WOoQhCfqNA4x0eFfGqkqKga7wyUB/NEK4F54uVAvRwzpUq+G6Al/5EkYbsdV0YBhv+qVTGsLod+y8wIvlv2i1/8ghVEnntuwbx58wCS9bxAYRI3t1Jvra5LHaHArInnQdqITLQpqFbKks7X/mFIwTExZqGwlubqU8eeOXPymRtXn4XyUGcwJGCqn95ccOuj+e+dx/E9C756+/OFzQ3/lJW5mjxFviIKeE5na3V1M2LMv9KkI1VVvgog3a20Vjf1ORcvdSx4sbqpH8xgwvzFXhVORgryLafCwiojTOZbe5IpfwqNGbEz+V1wwWjDZYOP3lf4t7e3OzGRFYzKmeGZkcFXhkhf9hkeZPNGRiY/8sg/PProjx999Cfsf/zjn/z93z/6D//w6PQz2IDH0CN8SU2oLVrkFFDRMhRFelBWxL3QJQn4XZ2N75x95qOPZnx6Y85nN+fdvD7r4+uzbn04+8tP5n5xa86nN2azXbs885Mbs901fw+EiUlFeDINO6+zpqYjqAJd+v5yuXwVtxtSMyqe7hpXm/N//8xdVlvjhvL4wms3f5kVj6eXT26Gh29AFhpzxOsaG/no85ZNm7bhnaFiBFVYfGeEj4cND7O6LrH0FgY8naZ0L0OhweXEhg8EbzDaje8IVIqLBtcNm1mhPn0IzZ6F/JXHQYsRtmCpKeFav22qCZP3AljwOTzdcKDbenvt2VmhxUXrhgZdnd6Krs4Kr7e807dVsHV3VXR2VrS1lrEcaXx8JrnbdD3Z1cLAvwJv9B1xOn0VsPRV3F1u7+aql5e65i6i4nSQ5srHbvmce5tZYU3s8nKfOpOZWRwREW7MD29A9WVpsJQUPmjCx0ry09IKc3NtOTnMpi5jYREy4T788Dpur7uOSd+SVtgeCh5g3TN3jyUfiVsYC7Zo4Uj2OGt89QcAoTWWBGbG1+Wa0ZdQvVDAsAs54Q+ApU8d38mIOcDEYb4BU+du3n/gKBpB8LZ332ESBvlqEAY4vc93W/keYVClQUcAgArxLhuVOq+jwl31yI8deMVqOvgLANisFU4uKnLASHl7Vnzhm5NwxYSEfNaV4utA69Zl4KZJSyvjy0J4apKSWOnaxhwrTOsA14xmV0kkBXttrEceJITCkgfDRcEMjgpfhbuCJdQJjUqBfNh0qYD4mF/xVQtpAIKHj1hChVAPXFRk5F/xURhHQIgK5Ign09211fGbWdWvLoMEkXn8BXWyWSuczCqFQMi3f7HcWSY6N5dvKlTy8cnCQvaVhYXMaGBTheQPPvnkS48OmCCmoALmIGXiuWP3BKGcAlMtkCO9KT+QIgzwWCL1tIwuHtOwnR4XDb7KJzqMz3CMOXtPEKLLEE+Q8S7DTmrL3Qr5bUDIN199FdyhzpaB2ujE6v/zmNOD/MMJ4FN2MDnYrBXMxIoKH4R8Gd74agDyDPfyBJtPF9UyHtMrk0MIDApqQNrWYIfWW1ZwZOLCaTSOyzVJTKEGVFmG3sPDUoFrUCTcH5CAKwhZEj8qKhGEqqqYtEywhW+skBJgVur1F7oJDrMqd1dldlnV3/yvqtzKSifMk7/4WjaTkZvZrBX+IgrBXFoSNu8zW+weB/REdiEEBK3wtvgLiOvi1GF1ZRYxZDlQCvEOVkNXdHfScvv2bcQyHltuiB4rugRLulizLKQTPVhvqkmLZOxb03AFIeuRQoXSOeGEIjiZBwKPCpG/KntDTWOfE5h/9HeumGRo0W5jsqrPFAFyqJbNWuGvkhI+eRGXnV1mmvb3CMb0ThsbQnE/ooDQyvLly+kChCqdTkwA9QRtBbcL7jdsHa2Oba7my0+t+mpd9FcrVtKJ2EACCdahmRKQtcJGwhL7hBMm8F9M9SUVcSU0hlQ2UQRC5lFAgqxVgg1XVMSUysogu9BnKcJgqxt6a6C2R35cvSK81ogFWi1F0xz0twtrgDArq/SPBiE9CEIEDklDhv60th4waKqmFF9NfsdZbi5FqZgkvQOuctQiO8V7gR8I6UrIDgysCJlYwmMZKMS5wBI1HHrlVpx5/84BnktjFKNWtNKAsBcfGNO1qWOTtbS05+czdZspzW7yz+CrFeXualebrbGvMjqp6kePVK6MKHd3Vlc1QYJoK6DIyUaFxXT4ZMf3FS4vKLCvXs2yfiUknj1YvjLmCA6kQuQHdIY3T5YAhddmNCmvQitQAhU/FTsGSCNp31eAk/PhigAvD4QyB6lAlOCBQwgpiNXIkQDfqRVLgmc4cMGSMcSjlaFzP1hyB6Q1XkBsRznHgdCwKGpAlwyv4eFNQGiIN48DDonBUN/lKHbanp5jf/QfHRklVWBZ4RanraiQmPRVJAutFclCPoiEUTEehHKnTbWMx4HGgFAfsFB6BCMXjygagVauI16oKU4ch69ymshRM+WB0EzRoK6lRLVwE3Wt6Uv3wdNwGI7nAZfTh3GDt0nfEaIAKhjo+PScPlyLo5JhwR0EIR9fbm5tI7n48LHj1bWeEluTw91lc7U7bY3V6zPss59z/NNjWPE2R6uroddRjbLDHNU2ECIojxFyt9KKUDSO3KlwTlGREypkrAYzUun2pEIFZ8dMegSWNuY49oNQnnK6TMYAIAEnhh0xIy01C1Ra5FRyhTpLh5DLQfgeYGCYmg5vLVoWD2i5ShoavcmDSAwAIauWETDKhCUjiauwDZSXhUKr1dqmYVzyLBgA74K9zIDgK2KLFy5avfClZTPnr3hmbuz8F9f9ekbMP/7fdT96JOaRn8Q8MzeOb4ylFUXHsLRPOhlpUVHJOORIioEDs4QLqhB0zF+qsDcqSRxZsyaGbz0Hy0K5kPhcFUTPB00m3vCcGTH5LRs3osyz57PtvSgoZv6mOZT9IKTXGDia002B4OhoOh2+BypaoYB4vRKilBlFCL/Z5SoliWDNGpKcIDudFlCQoyCkGfFUxM3QMsbMdx4TSy4xnbEgAbeXo+DehY0kNDKCS+x2W1hY3JuvrVq5ePmaV1esWfzWyhfeWPn866teXLryrfCVfNI8PGHl6nVECbRBVXzDm08B8uHmlSuj2Vatil6+PILj2A/GOb6DqnA8LIzQTSpBWmvzNIi7uwdHR88fOHBy4u3IkbPkdnV1YcvtIlzPBNmdOw/y8VxoDAtNWb70IYgGQsjw1HIRvC2ECOtjHTzIBQxQXuCWuHboPogasLnX2QsXmEmesnr1mrVraaImI5pZwmYFQoSBIBfNV6LC5WgZPPEeScp0xsLJQVGKj+Y93yODhXwZNATC8BYRGGhr97Z5O42t6/uNg23kWmrDN8JKNMQCW+LjfVE15gdwxJhH6/u0b0REpNNJdL6fwCwn6yqWAGNRMD75G5CxQP9ADKQINzYOejxkUk20NTcP8hW71NTCDRuyk5LycPVx5K23lqenpyG0UTYxFqjgMPGDkB9/Kv8Re+AHfyr/CXrg/wHvdrgrhwVoPgAAAABJRU5ErkJggg==